• Title/Summary/Keyword: Layer charge density

Search Result 209, Processing Time 0.032 seconds

Spatio-temporal Charge Distribution in Electric Double Layer Capacitors observed by pulsed Electro Acoustic Method

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.182-187
    • /
    • 2007
  • The use of the pulsed electro acoustic (PEA) method allowed us to perform the direct observations of spatio-temporal charge distributions in Electric double layer capacitors (EDLCs) based on polarizable nanoporous carbonaceous electrode. The negative charge density became the maximum, about $205C/m^3$ at the region where was near to collector layer in EDLCs for case $V_{DC}=2.5V$, while the positively charged density became the maximum, about $61.1C/m^3$ at the region where it was located around the cathode layer. The performance of the best sample was found to be better in terms of the charge density (Cs) and specific energy ($E_s$) with a maximum value of ${\sim}8.4F/g$ and 26 Wh/kg. The $C_s$ obtained from the PEA method agreed well with that from the energy conversion method. The PEA measurement used here is a very useful method to quantitively investigates the spatio-temporal charge distribution in EDLCs.

STIMULATING NEURAL ELECTRODE-A STUDY ON CHARGE INJECTION PROPERTIES OF IRIDIUM OXIDE FILMS

  • Lee, In-Seop;Ray A. Buchanan;Jim M.Williams
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.156-162
    • /
    • 1995
  • For a stimulating neural electrode, the charge density should be as large as possible to provide adequate stimulation of the nervous system while allowing for miniaturization of the electrode. Since iridium oxide is able to produce high charge densities while preventing undesirable reactions due to charge storage, it has become a promising material for neural prostheses. Successful production of stable Ir and Ir oxide films on various substrates now limits the use of this material. Ir was deposited on two differently prepared surface of (mirror finish, passivation) surgical Ti-6AI-4V with several methods. Ion beam mixing of sputter deposited Ir films on passivated Ti-6AI-4V produced stable and good adherent Ir films. It was found that the increase in charge density of pure Ir on continuous cyclingis due to the accumulation of the oxide phase ( associated with a large surface area) in which the valence state of iridium changes and the double-layer capacitance increases. This study also showed that the double layer capacitance is equally or even more responsible for the high charge density of anodically formed Ir oxide.

  • PDF

Ionic Size Effect on the Double Layer Properties: A Modified Poisson-Boltzmann Theory

  • Lou, Ping;Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2553-2556
    • /
    • 2010
  • On the basis of a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, the analytic expression for the effect of ionic size on the diffuse layer potential drop at negative charge densities has been given for the simple 1:1 electrolyte. It is shown that the potential drop across the diffuse layer depends on the size of the ions in the electrolyte. For a given electrolyte concentration and electrode charge density, the diffuse layer potential drop in a small ion system is smaller than that in a large ion system. It is also displayed that the diffuse layer potential drop is always less than the value of the Gouy-Chapman (GC) theory, and the deviation increases as the electrode charge density increases for a given electrolyte concentration. These theoretical results are consistent with the results of the Monte-Carlo simulation [Fawcett and Smagala, Electrochimica Acta 53, 5136 (2008)], which indicates the importance of including steric effects in modeling diffuse layer properties.

Investigation of Charge distribution in an Electric double layer capacitor (전기이중층 캐패시터 내의 전하분포 고찰)

  • Endrowednes, Kuantama;Jessi, Darma;Sung, Youl-Moon;Kim, Kwang-Tae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.201-204
    • /
    • 2008
  • The use of the pulsed electro acoustic (PEA) method allowed us to perform the direct observations of spatio-temporal charge distributions in Electric double layer capacitors (EDLCs) based on polarizable nanoporous carbonaceous electrode. The negative charge density became the maximum, about 205 C/$m^3$ at the region where was near to collector layer in EDLCs for case $V_{DC}$ = 2.5 V, while the positively charged density became the maximum, about 61.1 C/$m^3$ at the region where it was located around the cathode layer. The PEA measurement used here is a very useful method to quantitively investigates the spatio-temporal charge distribution in EDLCs.

  • PDF

The Surface Modification of Electrode with Solid Electrolyte Interphase for Hybrid Supercapacitor

  • Choi, Min-Geun;Kang, Soo-Bin;Yoon, Jung Rag;Lee, Byung Gwan;Jeong, Dae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1102-1106
    • /
    • 2015
  • A hybrid supercapacitor (HS) is an energy storage device used to enhance the low weight energy density (Wh/kg) of a supercapacitor. On the other hand, a sudden decrease in capacity has been pointed out as a reliability problem after many charge/discharge cycles. The reliability problem of a HS affects the early aging process. In this study, the capacity performance of a HS was observed after charge/discharge. For detailed analysis of the initial charge/discharge cycles, the charge and discharge curve was measured at a low current density. In addition, a solid electrolyte interphase (SEI) layer was confirmed after the charge/discharge. A HC composed of a lithium titanate (LTO) anode and active carbon cathode was used. The charge/discharge efficiency of the first cycle was lower than the late cycles and the charge/discharge rate was also lower. This behavior was induced by SEI layer formation, which consumed Li ions in the LTO lattice. The formation of a SEI layer after the charge/discharge cycles was confirmed using a range of analysis techniques.

Charge Distribution in a capacitor observed by PEA Method (PEA법에 의한 캐패시터내 전하분포 측정)

  • Endrowednes, Kuantama;Han, Deok-Woo;Kwak, Dong-Joo;Sung, Youl-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1156-1157
    • /
    • 2008
  • The use of the pulsed electro acoustic (PEA) method allowed us to perform the direct observations of spatio-temporal charge distributions in Electric double layer capacitors (EDLCs) based on polarizable nanoporous carbonaceous electrode. The negative charge density became the maximum, about 205 $C/m^3$ at the region where was near to collector layer in EDLCs for case $V_{DC}$ = 2.5 V, while the positively charged density became the maximum, about 61.1 $C/m^3$ at the region where it was located around the cathode layer. The PEA measurement used here is a very useful method to quantitively investigates the spatio-temporal charge distribution in EDLCs.

  • PDF

Charge trap characteristics with $Si_3N_4$ tmp layer thickness ($Si_3N_4$ trap layer의 두께에 따른 charge trap 특성)

  • Jung, Myung-Ho;Kim, Kwan-Su;Park, Goon-Ho;Kim, Min-Soo;Jung, Jong-Wan;Jung, Hong-Bae;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.124-125
    • /
    • 2008
  • The charge trapping and tunnelling characteristics with various thickness of $Si_3N_4$ layer were investigated for application of TBE (Tunnel Barrier Engineered) non-volatile memory. We confirmed that the critical thickness of no charge trapping was existed with decreasing $Si_3N_4$ thickness. Also, the charge trap centroid x and charge trap density were extracted by using CCS (Constant Current Stress) method. Through the optimized thickness of $Si_3N_4$ layer, it can be improve the performance of non-volatile memory.

  • PDF

Interfacial Properties of a-Se Thick Films to Solve Charge Trap and Injection Problems (전하 트랩 및 주입 문제를 해결하기 위한 비정질 셀레늄 필름의 계면 특성)

  • 조진욱;최장용;박창희;김재형;이형원;남상희;서대식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.497-500
    • /
    • 2001
  • Due to their better photosensitivity in X-ray, the amorphous selenium based photoreceptor is widely used on the X-ray conversion materials. It was possible to control the charge carrier transport of amorphous selenium by suitably alloying a-Se with other elements(e,g. As, Cl). The charge transport properties of amorphous Selenium is decided on hole which is induced from metal to selenium in metal-selenium junction and which is transferred in a-Se bulk. This phenomenon is resulted of changing electric field owing to increasing of space charge by deep trap of a-Se bulk. In this paper, We dopped the chlorine to compensate deep hole trap and deposited blocking layer using dielectric material to prevent from increasing space charge for injection charge between metal electrode and a-Se layer. We compared space charge and the decreasing of trap density through measuring dark and photo current.

  • PDF

Determination of Cation Charge Density in Mica-type Layered Aluminosilicates by N-alkylammonium Method (N-alkylammonium법에 의한 Mica형 층상 규산 알루미늄의 양이온 전하 밀도의 측정)

  • 최진호;박중철;김창은;이창교
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.4
    • /
    • pp.3-8
    • /
    • 1985
  • The layer charge densities and interlayer C. E. C(cation exchange capacity) of ten mica-type aluminosilicates from Yong-il Pohang-prefacture were determined by n-alkylammonium method which is based on the mo-nolayer-doubelelayer structural transition of ni-alkylammonium ion in interlayer space of the layered silcates. The upper and lower limits of layer charge and interlyer C, E, C estimated were about 0.25~0.36 eq/(Si, $Al)_4$ O10 and 69~99meq/100g, respectively.

  • PDF

Characterization of Electric Double-Layer Capacitor with 0.75M NaI and 0.5 M VOSO4 Electrolyte

  • Chun, Sang-Eun;Yoo, Seung Joon;Boettcher, Shannon W.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2018
  • We describe a redox-enhanced electric double-layer capacitor (EDLC) that turns the electrolyte in a conventional EDLC into an integral, active component for charge storage-charge is stored both through faradaic reactions with soluble redox-active molecules in the electrolyte, and through the double-layer capacitance in a porous carbon electrode. The mixed-redox electrolyte, composed of vanadium and iodides, was employed to achieve high power density. The electrochemical reaction in a supercapacitor with vanadium and iodide was studied to estimate the charge capacity and energy density of the redox supercapacitor. A redox supercapacitor with a mixed electrolyte composed of 0.75 M NaI and 0.5 M $VOSO_4$ was fabricated and studied. When charged to a potential of 1 V, faradaic charging processes were observed, in addition to the capacitive processes that increased the energy storage capabilities of the supercapacitor. The redox supercapacitor achieved a specific capacity of 13.44 mAh/g and an energy density of 3.81 Wh/kg in a simple Swagelok cell. A control EDLC with 1 M $H_2SO_4$ yielded 7.43 mAh/g and 2.85 Wh/kg. However, the relatively fast self-discharge in the redox-EDLC may be due to the shuttling of the redox couple between the polarized carbon electrodes.