• Title/Summary/Keyword: Launch Early Operation

Search Result 43, Processing Time 0.032 seconds

The Liability of Participants in Commercial Space Ventures and Space Insurance (상업우주사업(商業宇宙事業) 참가기업(參加企業)의 책임(責任)과 우주보험(宇宙保險))

  • Lee, Kang-Bin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.5
    • /
    • pp.101-118
    • /
    • 1993
  • Generally there is no law and liability system which applies particulary to commercial space ventures. There are several international treaties and national statutes which deal with space ventures, but their impact on the liability of commercial space ventures has not been significant. Every state law in the United States will impose both tort and contract liability on those responsible for injuries or losses caused by defective products or by services performed negligently. As with the providers of other products and services, those who participate in commercial space ventures have exposure to liability in both tort and contract which is limited to the extent of the resulting damage The manufacturer of a small and cheap component which caused a satellite to fail to reach orbit or to operate nominally has the same exposure to liability as the provider of launch vehicle or the manufacturer of satellite into which the component was incorporaded. Considering the enormity of losses which may result from launch failure or satellite failure, those participated in commercial space ventures will do their best to limit their exposure to liability by contract to the extent permitted by law. In most states of the United States, contracts which limit or disclaim the liability are enforceable with respect to claims for losses or damage to property if they are drafted in compliance with the requirements of the applicable law. In California an attempt to disclaim the liability for one's own negligence will be enforceable only if the contract states explicitly that the parties intend to have the disclaimer apply to negligence claims. Most state laws of the United States will refuse to enforce contracts which attempt to disclaim the liability for gross negligence on public policy grounds. However, the public policy which favoured disclaiming the liability as to gross negligence for providers of launch services was pronounced by the United States Congress in the 1988 Amendments to the 1984 Commercial Space Launch Act. To extend the disclaimer of liability to remote purchasers, the contract of resale should state expressly that the disclaimer applies for the benefit of all contractors and subcontractors who participated in producing the product. This situation may occur when the purchaser of a satellite which has failed to reach orbit has not contracted directly with the provider of launch services. Contracts for launch services usually contain cross-waiver of liability clauses by which each participant in the launch agrees to be responsible for it's own loss and to waive any claims which it may have against other participants. The crosswaiver of liability clause may apply to the participants in the launch who are parties to the launch services agreement, but not apply to their subcontractors. The role of insurance in responding to many risks has been critical in assisting commercial space ventures grow. Today traditional property and liability insurance, such as pre-launch, launch and in-orbit insurance and third party liability insurance, have become mandatory parts of most space projects. The manufacture and pre-launch insurance covers direct physical loss or damage to the satellite, its apogee kick moter and including its related launch equipment from commencement of loading operations at the manufacture's plant until lift off. The launch and early orbit insurance covers the satellite for physical loss or damage from attachment of risk through to commissioning and for some period of initial operation between 180 days and 12 months after launch. The in-orbit insurance covers physical loss of or damage to the satellite occuring during or caused by an event during the policy period. The third party liability insurance covers the satellite owner' s liability exposure at the launch site and liability arising out of the launch and operation in orbit. In conclusion, the liability in commercial space ventures extends to any organization which participates in providing products and services used in the venture. Accordingly, it is essential for any organization participating in commercial space ventures to contractually disclaim its liability to the extent permitted by law. To achieve the effective disclaimers, it is necessary to determine the applicable law and to understand the requirements of the law which will govern the terms of the contract. A great deal of funds have been used in R&D for commercial space ventures to increase reliability, safety and success. However, the historical reliability of launches and success for commercial space ventures have proved to be slightly lower than we would have wished for. Space insurance has played an important role in reducing the high risks present in commercial space ventures.

  • PDF

Design, Implementation, and Validation of KOMPSAT-2 Software Simulator

  • Lee, Sang-Uk;Lee, Byoung-Sun;Kim, Jae-Hoon;Cho, Sung-Ki
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.140-152
    • /
    • 2005
  • In this paper, we present design features, implementation, and validation of a satellite simulator subsystem for the Korea Multi-Purpose Satellite-2 (KOMPSAT-2). The satellite simulator subsystem is implemented on a personal computer to minimize costs and trouble on embedding onboard flight software into the simulator. An object-oriented design methodology is employed to maximize software reusability. Also, instead of a high-cost commercial database, XML is used for the manipulation of spacecraft characteristics data, telecommand, telemetry, and simulation data. The KOMPSAT-2 satellite simulator subsystem is validated by various simulations for autonomous onboard launch and early orbit phase operations, anomaly operation, and science fine mode operation. It is also officially verified by successfully passing various tests such as the satellite simulator subsystem test, mission control element system integration test, interface test, site installation test, and acceptance test.

  • PDF

Analysis on Orbital Dynamics Operation Results of KOMPSAT-3 during Early Phase after Launch (다목적실용위성 3호 발사 후 초기 궤도 운영결과 분석)

  • Jung, Ok-Chul;Yim, Hyeonjeong;Chung, Dae-Won;Kim, Eun-Kyou;Kim, Hak-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.319-326
    • /
    • 2013
  • This paper describes the orbital dynamics operation results for the launch and early operations phase (LEOP) of KOMPSAT-3, which was successfully launched on May 18, 2012. At the initial phase, operational orbit determination was carried out using ground tracking data and GPS navigation solution. And, both in-plane and out-of plane maneuvers were executed in order to change the orbit from the injection orbit to the mission orbit. In addition, the accuracy of precise orbit determination was indirectly evaluated by overlapping method using GPS raw data of KOMPSAT-3 and international GNSS service data from worldwide-distributed ground stations. Currently, KOMPSAT-3 is operated in pre-defined mission orbit, and its various kinds of orbit data are generated and distributed to support the normal mission operations.

The Design of MSC(Multi-Spectral Camera) Calibration Operation

  • Yong Sang-Soon;Kang Geum-Sil;Jang Young-Jun;Kim Jong-Ah;Kang Song-Doug;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.601-603
    • /
    • 2004
  • Multi-Spectral Camera(MSC) is a payload on the KOMPSAT -2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of $20\%$ over the mission lifetime of 3 years with the functions of programmable gain! offset and onboard image data compression/storage. MSC instrument has one(1) channel for panchromatic Imaging and four(4) channel for multi-spectral Imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). In this paper, the configuration, the interface of MSC hardware and the MSC operation concept are described. And the method of the MSC calibration are described and the design of MSC calibration operation to measure the change of MSC after Launch & Early Operation(LEOP) and normal mission operations are discussed and analyzed.

  • PDF

Mission Operations of the KOMPSAT-1 satellite

  • Kim, Hae-Dong;Kim, Eun-Kyou;Park, Hae-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.92.5-92
    • /
    • 2001
  • The KOMPSAT-1(Korea Multi-Purpose Satellite-1) is the first multi-purpose satellite funded by Korean government for the purpose of remote sensing and scientific data gathering in KOREA. It has successfully achieved its own mission since Dec. 21, 1999. This paper provides an overview of the KOMPSAT-1 missions and addresses the nominal mission planning and operation flow. This paper also describes the routine operational orbit determination and orbit prediction process using GPS navigation solution data. Meanwhile, some problems due to inexperience of the multiple mission operations during LEOP(Launch & Early Orbit Phase) and early normal mission were investigated. Then, resolutions that include the development of new mission planning tool are addressed. The KOMPSAT-1´s missions become more complicated rather than its Initially designed ones. In order to accomplish ...

  • PDF

Ground Station Design for STSAT-3

  • Kim, Kyung-Hee;Bang, Hyo-Choong;Chae, Jang-Soo;Park, Hong-Young;Lee, Sang-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.283-287
    • /
    • 2011
  • Science and Technology Satellite-3 (STSAT-3) is a 150 kg class micro satellite based with the national space program. The STSAT-3 system consists of a space segment, ground segment, launch service segment, and various external interfaces including additional ground stations to support launch and early operation phases. The major ground segment is the ground station at the Satellite Technology Research Center, Korea Advanced Institute of Science and Technology site. The ground station provides the capability to monitor and control STSAT-3, conduct STSAT-3 mission planning, and receive, process, and distribute STSAT-3 payload data to satisfy the overall missions of STSAT-3. The ground station consists of the mission control element and the data receiving element. This ground station is designed with the concept of low cost and high efficiency. In this paper, the requirements and design of the ground station that has been developed are examined.

Simulation Study on GEO-KOMPSAT Operational Orbit Injection (정지궤도 복합위성 운용궤도 진입과정 시뮬레이션 연구)

  • Park, Bong-Kyu;Yang, Koon-Ho;Lee, Sang-Cherl
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.65-73
    • /
    • 2011
  • After launch, in order to inject the geostationary satellite into its operational orbit, the perigee altitude are forced to be raised to geostationary altitude by firing onboard LAE(Liquid Apogee Engine) at apogee of the transfer orbit. In this process, the LAE burn is divided into three or four separated burns in order to control the orbit very precisely by giving feedback the determined orbit informations and to inject the satellite in predefined longitude. This paper proposes an algorithm to determine LAE firing time slots and ${\Delta}V$ vectors under assumption of impulsive LAE burning, and additionally, a method to compensate errors induced by continuous burning. And computer simulations have been performed to validate proposed algorithms.

Results Analysis for On-orbit Operation of KOMPSAT-1 Propulsion System (다목적실용위성 1호 추진시스템 궤도운용 결과 분석)

  • 김정수;한조영;진익민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.107-113
    • /
    • 2000
  • Design configuration and performance requirements for KOMPSAT-1 propulsion system were described. Operational results of the propulsion system obtained through the satellite Launch and Early Operation Phase were scrutinized. Performance characteristics of the thrusters which are employed for spacecraft attitude control and the corresponding propellant depletion rate were analysed according to satellite operation modes. Additionally, propellant leakproof and thermal control capability were checked out from the view point of system verification. Propellant depletion rates calculated by PVT method in $\Delta$V maneuvering and each attitude control mode produce the very meaningful results for the prediction of total propellant consumption up to the end of satellite mission life.

  • PDF

Characteristics of KOMPSAT-3A Key Image Quality Parameters During Normal Operation Phase (정상운영기간동안의 KOMPSAT-3A호 주요 영상 품질 인자별 특성)

  • Seo, DooChun;Kim, Hyun-Ho;Jung, JaeHun;Lee, DongHan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1493-1507
    • /
    • 2020
  • The LEOP Cal/Val (Launch and Early Operation Phase Calibration/Validation) was carried out during 6 months after KOMPSAT-3A (KOMPSAT-3A Korea Multi-Purpose Satellite-3A) was launched in March 2015. After LEOP Cal/Val was successfully completed, high resolution KOMPSAT-3A has been successfully distributing to users over the past 8 years. The sub-meter high-resolution satellite image data obtained from KOMPSAT-3A is used as basic data for qualitative and quantitative information extraction in various fields such as mapping, GIS (Geographic Information System), and national land management, etc. The KARI (Korea Aerospace Research Institute) periodically checks and manages the quality of KOMPSAT-3A's product and the characteristics of satellite hardware to ensure the accuracy and reliability of information extracted from satellite data of KOMPSAT-3A. To minimize the deterioration of image quality due to aging of satellite hardware, payload and attitude sensors of KOMPSAT-3A, continuous improvement of image quality has been carried out. In this paper, the Cal/Val work-flow defined in the KOMPSAT-3A development phase was illustrated for the period of before and after the launch. The MTF, SNR, and location accuracy are the key parameters to estimate image quality and the methods of the measurements of each parameter are also described in this work. On the basis of defined quality parameters, the performance was evaluated and measured during the period of after LEOP Cal/Val. The current status and characteristics of MTF, SNR, and location accuracy of KOMPSAT-3A from 2016 to May 2020 were described as well.

On-orbit Thermal Behavior of KOMPSAT Liquid-Monopropellant Hydrazine($N_2$H$_4$) Propulsion System

  • 김정수;최환석;한조영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.6-6
    • /
    • 2000
  • On-orbit thermal behavior of KOMPSAT (Korea Multi-purpose Satellite) propulsion system employing hydrazine (N$_2$H$_4$) liquid monopropellant is addressed. Thermal control performance to prevent propellant freezing in spacecraft-operational orbit was verified by flight telemetry data obtained during LEOP (Launch and Early Operation Phase). Results are depicted in terms of temperature history during several orbits selected and are compared with acceptable temperature ranges of system components. Cyclic behavior of temperature is reduced into duty cycles of the avionics heaters and subsequently converted into the electrical power required to keep away from propellant freezing. Temperature of each component which was achieved under on-ground thermal-balanced condition of spacecraft, is presented for comparison with the flight data, additionally.

  • PDF