• 제목/요약/키워드: Lattice relaxation

검색결과 123건 처리시간 0.022초

$CaC_6$ 결정에 대한 정상상태에서의 $^{13}C$ 핵자기공명 측정 ($^{13}C$ Nuclear Magnetic Resonance Study of Graphite Intercalated Superconductor $CaC_6$ Crystals in the Normal State)

  • 김성훈;강기혁;민병진;;이무희;김준성
    • Progress in Superconductivity
    • /
    • 제12권1호
    • /
    • pp.51-56
    • /
    • 2010
  • $^{13}C$ NMR (nuclear magnetic resonance) measurements have been performed to investigate the local electronic structure of a superconducting graphite intercalation compound $CaC_6$ ($T_c$ = 11.4 K). A large number of single crystals were stacked and sealed in a quartz tube for naturally abundant $^{13}C$ NMR. The spectrum, Knight shift, linewidth, and spin-lattice relaxation time $T_1$ were measured in the normal state as a function of temperature down to 80 K at 8.0 T perpendicular to the c-axis. The $^{13}C$ NMR spectrum shows a single narrow peak with a very small Knight shift. The Knight shift and the linewidth of the $^{13}C$ NMR are temperature-independent around, respectively, +0.012% and 1.2 kHz. The spin-lattice relaxation rate, $1/T_1$, is proportional to temperature confirming a Korringa behavior as for non-magnetic metals. The Korringa product is measured to be $T_1T\;=\;210\;s{\cdot}K$. From this value, the Korringa ratio is deduced to be $\xi$ = 0.73, close to unity, which suggests that the independent-electron description works well for $CaC_6$, without complications arising from correlation and many-body effects.

자기공명흡수법에 의한 무혈혈당측정기의 디자인 (Design of a Non-Invasive Blood Glucose Sensor Using a Magneto-Resonance Absorption Method)

  • 김동균;원종화
    • 전자공학회논문지SC
    • /
    • 제42권2호
    • /
    • pp.33-38
    • /
    • 2005
  • 신체 내 혈당 변화량과 $^1H$ 원자핵의 스핀-격자 완화시간의 변화량이 관련 있음과 원자핵의 스핀-격자 완화시간을 측정하는 방법으로 자기공명흡수법이 제안된 바 있다. 자기공병흡수법에 의하여 신체 내 혈당 변화량을 감지하기 위해서는 검출 영역내 고수준의 자기장의 세기와 균일도의 확보가 필수적이다. 가정에서 손쉽게 혈당의 변화량을 측정할 수 있도록, 본 논문에서는 가정용으로 적합한 크기와 무게를 가지면서 요구되는 자기장의 세기와 균일도를 확보한 무혈혈당측정기를 디자인하였다. 여러 형상과 재질을 갖는 초기 모델들을 설계, 제작하였고, 검출 영역의 자기 특성을 비교하여 최종 재질을 결정하였다. 또한, 유한요소 해석모델을 구축하고 형상 최적화를 통하여 최종 모델을 선정하였다.

Investigation on structural symmetry of CsCoCl3·2H2O crystals by magic-angle spinning 1H and static 133Cs nuclear magnetic resonance

  • Park, Sang Hyeon;Jang, Du Chang;Jeon, Hara;Gyeong, Oh Yi;Lim, Ae Ran
    • 한국자기공명학회논문지
    • /
    • 제26권1호
    • /
    • pp.10-16
    • /
    • 2022
  • The phase transition temperatures of CsCoCl3·2H2O crystals are investigated via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Three endothermic peaks at temperatures of 370 K (=TC1), 390 K (=TC2), and 416 K (=TC3) were observed for phase transitions from CsCoCl3·2H2O to CsCoCl3·1.5H2O, to CsCoCl3·H2O, and then to CsCoCl3·0.5H2O, respectively. In addition, the spin-lattice relaxation time T in the rotating frame and T1 in the laboratory frame as well as changes in chemical shifts for 1H and 133Cs near TC1 were found to be temperature dependent. Our analyses results indicated that the changes of chemical shifts, T, and T1 are associated with structural phase transitions near temperature TC1. The changes of chemical shifts, T, and T1 near TC1 were associated with structural phase transitions, owing to the changes in the symmetry of the structure formed of H2O and Cs+ ions. Consequently, the structural symmetry in CsCoCl3·2H2O crystals based on temperature is discussed by the environments of their H and Cs nuclei.

α-티타늄 평판표면에서 강체 구형팁의 스크래치로 인한 내부 결정구조 특성 변화에 대한 연구 (A Study on Crystalline Structural Variations of the Rigid Spherical-Tip scratch on the Surface of α-Titanium substrates via Molecular Dynamics Simulations)

  • 정예리;김진호;이태일
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.167-172
    • /
    • 2023
  • Titanium alloys are widely recognized among engineering materials owing to their impressive mechanical properties, including high strength-to-weight ratios, fracture toughness, resistance to fatigue, and corrosion resistance. Consequently, applications involving titanium alloys are more susceptible to damage from unforeseen events, such as scratches. Nevertheless, the impact of microscopic damage remains an area that requires further investigation. This study delves into the microscopic wear behavior of α-titanium crystal structures when subjected to linear scratch-induced damage conditions, utilizing molecular dynamics simulations as the primary methodology. The configuration of crystal lattice structures plays a crucial role in influencing material properties such as slip, which pertains to the movement of dislocations within the crystal structure. The molecular dynamics technique surpasses the constraints of observing microscopic phenomena over brief intervals, such as sub-nano- or pico-second intervals. First, we demonstrate the localized transformation of lattice structures at the end of initialization, indentation, and wear processes. In addition, we obtain the exerted force on a rigid sphere during scratching under linear movement. Furthermore, we investigate the effect of the relaxation period between indentation and scratch deformation. Finally, we conduct a comparison study of nanoindentation between crystal and amorphous Ti substrates. Thus, this study reveals the underlying physics of the microscopic transformation of the α-titanium crystal structure under wear-like accidental events.

Lattice Boltzmann Method를 이용한 2차원 자유수면 시뮬레이션 기법연구 (Feasibility Study on the Two-dimensional Free Surface Simulation Using the Lattice-Boltzmann Method)

  • 정노택
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제15권4호
    • /
    • pp.273-280
    • /
    • 2012
  • 전산유체역학의 격자볼츠만법은 Navier-Stokes방정식의 시뮬레이션 기법 보다 비교적 간략한 이산화 방식으로 인하여 공학적 응용성을 더욱 넓혀 가고 있다. 본 논문에서는 단일 완화계수 및 D2Q9 방식으로 중력장하에서 액체영역에서의 다이나믹스만 계산하는 자유수면 시뮬레이션을 수행하였으며, 그 활용성을 검증하였다. 자유표면의 재구성방법, 분포함수의 조합으로 이루어진 경계조건, 표면장력, 중력장의 안정화, 격자의존성, 자유수면 끝단의 하단 벽면 이동 검증등을 수행하였으며, 그 결과치가 실험치의 데이터와 일치함을 보였다.

Detection of Iron Nanoparticles using Nuclear Magnetic Resonance Relaxometry and Inverse Laplace Transform

  • Kim, Seong Min
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.345-351
    • /
    • 2014
  • Purpose: Rapid detection of bacteria is very important in agricultural and food industries to prevent many foodborne illnesses. The objective of this study was to develop a portable nuclear magnetic resonance (NMR)-based system to detect foodborne pathogens (E. coli). This study was focused on developing a method to detect low concentrations of magnetic nanoparticles using NMR techniques. Methods: NMR relaxometry was performed to examine the NMR properties of iron nanoparticle mixtures with different concentrations by using a 1 T permanent magnet magnetic resonance imaging system. Exponential curve fitting (ECF) and inverse Laplace transform (ILT) methods were used to estimate the NMR relaxation time constants, $T_1$ and $T_2$, of guar gum solutions with different iron nanoparticle concentrations (0, $10^{-3}$, $10^{-4}$, $10^{-5}$, $10^{-6}$, and $10^{-7}M$). Results: The ECF and ILT methods did not show much difference in these values. Analysis of the NMR relaxation data showed that the ILT method is comparable to the classical ECF method and is more sensitive to the presence of iron nanoparticles. This study also showed that the spin-spin relaxation time constants acquired by a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence are more useful for determining the concentration of iron nanoparticle solutions comparwith the spin-lattice relaxation time constants acquired by an inversion recovery pulse sequence. Conclusions: We conclude that NMR relaxometry that utilizes CPMG pulse sequence and ILT analysis is more suitable for detecting foodborne pathogens bound to magnetic nanoparticles in agricultural and food products than using inversion recovery pulse sequence and ECF analysis.

TiN피막의 경도 및 구조적 특성에 미치는 화학증착 조건의 영향 (Effects of Chemical Vapor Deposition Parameters on The Hardness and the Structural Characteristics of TiN Film)

  • 신종훈;이성래;백영현
    • 한국표면공학회지
    • /
    • 제20권3호
    • /
    • pp.106-117
    • /
    • 1987
  • The microhardness and the structural characteristics of the chemically vapor deposited TiN film on the 430 stainless steel substrate have been investigated with various deposition parameters such as the deposition time, the total flow rate, the flow rate ratio $(H_2/N_2)$, and the deposition temperature. The most important factor to affect the microhardness of the TiN film in this study was the denseness of the structure in connection with the degree of the lattice strain. The relationship between the lattice parameter changes and the grain size variation under all deposition conditions generally followed the grain boundary relaxation model. The (111) preferred orientation prevailed in the early stage of the deposition conditions, however, the (200) preferred orientation was developed in the later stage. The surface morphology at optimum conditions displayed a dense diamond shaped structure and the microhardness of the films was high (1700-2400Hv) regardless of the type of the substrates used.

  • PDF

Zn와 Ni의 치환이 YBa$_2Cu_3O_7$의 반강자성적 스핀요동에 주는 효과 (Zn and Ni Doping Effects on Antiferromagneticv Spin Fluctuation in YBa$_2Cu_3O_7$)

  • 한기성;민병진;이규홍;서승원;김도형;이무희;이원춘;조정숙
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.247-250
    • /
    • 1999
  • We have performed $^{63,65}$Cu nuclear quadrupole resonance (NQR) measurements on Zn and Ni doped YBa$_2Cu_3O_7$ (YBa$_2Cu_{3-x}M_xO_7$, M=Zn or Ni, x = 0.00 ${\sim}$ 0.09). Doping effects are markedly different in relaxation rates as well as in superconducting transition temperatures. Both the spin-lattice and the spin-spin relaxation rates decrease for Zn doped YBCO. However, those increase for Ni doped YBCO. This contrast in local electronic dynamics provides a clear microscopic evidence that Zn forms no local moment, while Ni develops a local moment. Consequently, the antiferromagnetic spin fluctuation is suppressed by Zn doping whereas it is preserved by Ni doping.

  • PDF

NMR을 이용한 홍삼의 용적밀도 측정 및 내부 조직 판별 (Determination of Bulk Density and Internal Structure of Red Ginseng Root Using NMR)

  • 장기철
    • Journal of Ginseng Research
    • /
    • 제22권2호
    • /
    • pp.96-101
    • /
    • 1998
  • This paper describes the determination of bulk density and the discrimination of internal structure of red ginseng by nuclear magnetic resonance (NMR). The 102 red ginseng roots were tested for bulk density. The NMR properties measured by NMR parameters such as spin-lattice relaxation time ($T_1$) and spin-spin relaxation time ($T_2$) were determined using the low field proton NMR analyzer. Bulk density of red ginseng root showed a highly negative significant correlation (r=-0.8934) with the value of $T_1$, but a highly positive significant correlation (r=0.7672 and 0.5909) with the value of T21 (short T2) and T22 (long T2), respectively. Multiple regression equation, Y=-0.0069.$T_1$+0.3044.$T_{21}$-0.0156.$T_{22}$-0.6368, using the MNR parameter values of 80 red ginseng roots can effectively predict the bulk density of 22 red ginseng roots with the correlation coefficient of 0.9396 and the standard error of 0.086. The differences in the internal structure of normal and inside white part of red ginseng were easily found by the signal intensity of NMR image based on magnetic properties of proton nucleus.

  • PDF

[ $^{11}B$ ] Nuclear Magnetic Resonance Study of Spin Structures in Terbium Tetraboride

  • Mean, B.J.;Kang, K.H.;Kim, J.H.;Hyun, I.N.;Lee, Moo-Hee;Cho, B.K.
    • 한국자기공명학회논문지
    • /
    • 제10권2호
    • /
    • pp.197-202
    • /
    • 2006
  • [ $^{11}B$ ] nuclear magnetic resonance (NMR) measurements were performed on the single crystals of $TbB_4$ to investigate local electronic structure and 4f spin dynamics. $^{11}B$ NMR spectrum, Knight shift, spin-lattice and spin-spin relaxation rates were measured down to 4K at 8T. $^{11}B$ NMR shift and linewidth are huge and strongly temperature dependent due to the 4f moments. In addition, both are proportional to magnetic susceptibility, indicating that the hyperfine field at the boron site originates from the 4f spins of Tb. Below $T_N$, the single broad resonance peak of $^{11}B$ NMR splits into several peaks reflecting the local magnetic fields due to antiferromagnetic spin arrangements. The longitudinal and the transverse relaxation rates, $1/T_1\;and\;1/T_2$, independent of temperature above $T_N$, decreases tremendously confirming huge suppression of spin fluctuation below $T_N$.

  • PDF