DOI QR코드

DOI QR Code

Feasibility Study on the Two-dimensional Free Surface Simulation Using the Lattice-Boltzmann Method

Lattice Boltzmann Method를 이용한 2차원 자유수면 시뮬레이션 기법연구

  • Received : 2012.02.29
  • Accepted : 2012.09.06
  • Published : 2012.11.25

Abstract

The numerical simulation using the Lattice Boltzmann Method in the field of computational fluid dynamics becomes wider in the engineering applications because of its simplicity of update rules compared to the conventional Navier-Stokes solvers. Here, a two-dimensional D2Q9 LB model is numerically tested with a few new computational treatment on the free surface. The single relaxation time is applied under the gravitational field where applied only in the higher density fluid because of its big density difference. At the free surface, the reconstruction techniques in combination with boundary conditions is adopted in order to get some distribution function coming into the fluid site from the air one, and surface tension, early stable test for the gravitional field is considered in it. With the implementation of the gravitational profile, conserving the overall mass and grid dependency are observed during the calculations and freesurface advance track is well captured with an experiment.

전산유체역학의 격자볼츠만법은 Navier-Stokes방정식의 시뮬레이션 기법 보다 비교적 간략한 이산화 방식으로 인하여 공학적 응용성을 더욱 넓혀 가고 있다. 본 논문에서는 단일 완화계수 및 D2Q9 방식으로 중력장하에서 액체영역에서의 다이나믹스만 계산하는 자유수면 시뮬레이션을 수행하였으며, 그 활용성을 검증하였다. 자유표면의 재구성방법, 분포함수의 조합으로 이루어진 경계조건, 표면장력, 중력장의 안정화, 격자의존성, 자유수면 끝단의 하단 벽면 이동 검증등을 수행하였으며, 그 결과치가 실험치의 데이터와 일치함을 보였다.

Keywords

References

  1. Bhatnagar, P.L., Gross, E.P. and Krook, M., 1954, "A model for collision processes in gases. I : small amplitude processes in charged and neutral one-component system", Phys. Rev., 94, 511-525. https://doi.org/10.1103/PhysRev.94.511
  2. Buckels, J.J., Hazlett, R.D., Chen, S., Eggert, K.G., Grunau, W. and Soll, W.E., 1994, "Toward Improved Prediction of Reservoir Flow Performance - Simulating Oil and Water Flows at the Pore Scale", Los Alamos Science, No. 22, pp.112-121.
  3. Buick, J.M. and Greated, C. A., 2000, "Gravity in a lattice Boltzmann model", Physical Review E, Vol. 61, No. 5 5307-5320. https://doi.org/10.1103/PhysRevE.61.5307
  4. Chen, S., Martinez, D. and Mei, R., 1996, "On boundary conditions in Lattice Boltzmann methods", Phys Fluids 8, 2527-2536. https://doi.org/10.1063/1.869035
  5. Chowdhury, D. and Stauffer, D., 1990, "Systematics of the models of immune response and autoimmune disease", Journal of Stat. Phys, 59, 1019-1042. https://doi.org/10.1007/BF01025860
  6. Hirt, C.W. and Nichols, B.D., 1981, "Volume of fluid(VOF) method for the dynamics of free boundaries", Journal of Computational Physics, Vol.39, pp.201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  7. He, X. and Luo, L.-S., 1997, "Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation", Journal of Statistical Physics, Vol. 88, Nos. 3/4, 927-944. https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
  8. Huabing L., Xiaoyan L., Haiping F. and Yuehong Q., 2004, "Force evaluations in lattice Boltzmann simulations with moving boundaries in two dimentions", Physical Review E 70, 1539-3755.
  9. Jung, R.-T., 2009, "Numerical simulation on phase separation by using the Lattice-Boltzmann Method", J. the Korean Society for Marine Environmental Engineering, Vol.12, No.3, 197-201, printed in Korean.
  10. Kato, Y., Kono, K., Seta, T., Martinez, D. and Chen, S., 1997, "AMADEUS Project and Microscopic Simulation of Boiling Two-Phase Flow by the Lattice-Boltzmann Method", International J. of Modern Physics C, Vol. 8, 843-858. https://doi.org/10.1142/S0129183197000722
  11. Kim, I., 2000, "Second order bounce back boundary condition for the Lattice Boltzmann Fluid Simulation", KSME International Journal, 14, 84-92. https://doi.org/10.1007/BF03184774
  12. Korner, C., Thies, M., Hofmann, T., Thurey, N. and Rude, U., 2005, "Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming", Journal of Statistical Physics, Vol. 121, 1/2, 179-196. https://doi.org/10.1007/s10955-005-8879-8
  13. Martin, J.C. and Moyce, W.J., 1952, "Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane", Phil. Trans. R. Soc. Lond. A, 244, 312-324. https://doi.org/10.1098/rsta.1952.0006
  14. Nadiga, B.T. and Zaleski, S., 1996, "Investigations of a twophase fluid model", European Jornal of Mechanics, B/Fluids, Vol. 15, n-6, pp. 885-896.
  15. Nagel, K. and Barrett, C.L., 1997, "Using Microsimulation Feedback for Trip Adaptation for Realistic Traffic in Dallas", Int. J. Mod. Phys. C, 8, 505-525. https://doi.org/10.1142/S0129183197000412
  16. Orlandini, E., Swift, M.R. and Yeomans, J.M., 1995, "A lattice Boltzmann model of binary-fluid mixtures", Europhysics Leters, 32(6), 463-468. https://doi.org/10.1209/0295-5075/32/6/001
  17. Resnics, M., 1995, "Turtles, Termites, and Traffic Jams - Explorations in Massively Parallel Microworlds", A Bradford Book, MIT Press.
  18. Ryskin, G.R. and Leal, L.G., 1984, "Numerical solution of freeboundary problems in fluid mechanics. Part 1. The finite-difference technique", J. Fluid Mech. Vol. 148, 1-17. https://doi.org/10.1017/S0022112084002214
  19. Shan, X. and Chen, H., 1993, "Lattice boltzmann model for simulating flows with multiple phased and components", Physical Review E, Vol. 47, No. 3, pp. 1825-1819.
  20. Sussman, M., Smereka, P. and Osher, S., 1994, "A level set approach for computating solutions to incompressible two-phase flow", Journal of Computational physics, Vol.114, pp.272-280.
  21. Takagi, S., Prosperetti, A. and Matsumoto, Y., 1994, "Drag coefficient of a gas bubble in an asymmetric shear flow", Physics of Fluids, Vol.6, 3186-3188. https://doi.org/10.1063/1.868097
  22. Thurey, N., 2003, "A single-phase free-surface Lattice Boltzmann Method", Master thesis, INSTITUT FUR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG).
  23. Thurey, N., Wojtan, C., Gross, M. and Turk, G., 2010, "A multiscale approach to mesh-based surface tension flows", ACM SIGGRAPH 210 papers.
  24. Tryggvason, G. et al., 2011, "Direct numerical simulations of Gas-Liquid Multiphase flows", Cambridge University Press.
  25. Wen, B., Li, H., Zhang, C. and Fang, H., 2012, "Lattice-typedependent momentum-exchange method for moving boundaries", Physical Review E 85.
  26. Wolfram, F., Tino, W., Holger, T. and Hans-Peter, S., 2008, "Smoke Surfaces: An Interactive Flow Visualization Technique Inspired by Real-World Flow Experiments", IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2008) 14(6).
  27. Xiaoming, W., Ye, Z., Zhe, F., Wei, L. Suzanne, Y.-S. and Arie, K., 2003, "Blowing in the Wind", Eurographics/SIGGRAPH Sympposium on Computer Animation, The Eurographics Association, 75-85.
  28. Yabe, T., Xiao, F. and Utsumi, T., 2001, "The Constrained Interpolation Profile Method for Multiphase Analysis", JCP, 169, 556-593. https://doi.org/10.1006/jcph.2000.6625

Cited by

  1. Study on the Free Surface Behavior Using the Lattice Boltzmann Method vol.16, pp.4, 2013, https://doi.org/10.7846/JKOSMEE.2013.16.4.255