• Title/Summary/Keyword: Lattice Reduction-Aided Detection

Search Result 10, Processing Time 0.02 seconds

Lattice Reduction-aided Detection with Out-of-Constellation Point Correction for MIMO Systems (MIMO 시스템을 위한 Out-of-Constellation Point 보정 Lattice Reduction-aided 검출기법)

  • Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1339-1345
    • /
    • 2007
  • An important drawback in Lattice Reduction (LR) aided detectors has been investigated. For the solution, an improved LR aided detection with ignorable complexity overhead is proposed for MIMO system, where the additional correction operation is performed for the case of unreliable symbol decision. We found that LR aided detection errors mainly occur when the lattice points after the inverse lattice transform in the final step fall outside the constellation point set. In the proposed scheme, we check whether or not the lattice point obtained through LR detection is out of constellation. Only for the case of out of constellation, we additionally perform ML search with reduced search region restricted to the neighboring points near to the obtained lattice points. Using this approach, we can effectively and significantly improve the detection performance with just a slight complexity overhead which is negligible compared to full searched ML scheme. Simulation results show that the proposed scheme achieves the detection performance near to that of the ML detection with a lower computational complexity.

Lattice-Reduction-Aided Detection based Extended Noise Variance Matrix using Semidefinite Relaxation in MIMO Systems (MIMO시스템에서 Semidefinite Relaxation을 이용한 잡음 분산 행렬 기반의 Lattice-Reduction-Aided 검출기)

  • Lee, Dong-Jin;Park, Su-Bin;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.932-939
    • /
    • 2008
  • Recently lattice-reduction (LR) has been used in signal detection for multiple-input multiple-output (MIMO) systems. The conventional LR aided detection schemes are combinations of LR and signal detection methods such as zero-forcing (ZF) and minimum mean square error (MMSE) detection. In this paper, we propose the Lattice-Reduction-aided scheme based on extended noise variance matrix to search good candidate symbol set in quantization step. Then this scheme estimates transmitted symbol with Semidefinite Relaxation by candidate symbol set. Simulation results in a random MIMO system show that the proposed scheme exhibits improved performance and a slight increase in complexity.

Lattice Reduction Aided MIMO Detection using Seysen's Algorithm (Seysen 알고리즘을 이용한 Lattice Reduction-aided 다중 안테나 검출기법)

  • An, Hong-Sun;Mohaisen, Manar;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.642-648
    • /
    • 2009
  • In this paper, we use SA (Seysen's Algorithm) instead of LLL (Lenstra-Lenstra-Lovasz) to perform LRA (Lattice Reduction-Aided) detection. By using SA, the complexity of lattice reduction is reduced and the detection performance is improved Although the performance is improved using SA, there still exists a gap in the performance between SA-LRA and ML detection. To reduce the performance difference, we apply list of candidates scheme to SA-LRA. The list of candidates scheme finds a list of candidates. Then, the candidate with the smallest squared Euclidean distance is considered as the estimate of the transmitted signal. Simulation results show that the SA-LRA detection learn to quasi-ML performance. Moreover, the efficiency of the SA is shown to highly improve the channel matrix conditionality.

Low-Complexity Lattice Reduction Aided MIMO Detectors Using Look-Up Table (Look-Up Table 기반의 복잡도가 낮은 Lattice Reduction MIMO 검출기)

  • Lee, Chung-Won;Lee, Ho-Kyoung;Heo, Seo-Weon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.88-94
    • /
    • 2009
  • We propose a scheme which reduce the computational complexity of the lattice reduction (LR) aided detector in MIMO system. The performance of the ML detection algorithm is good but the computational complexity grows exponentially with the number of antenna elements and constellation points. LR aided detector shows the same diversity with the ML scheme with relatively less complexity. But the LR scheme still requires many computations since it involves several iterations of size reduction and column vector exchange. We notice that the LR process depends not on the received signal but only on the channel matrix so we can apply LR process offline and store the results in Look-Up Table (LUT). In this paper we propose an algorithm to generate the LUT which require less memory requirement and we evaluate the performance and complexity of the proposed system. We show that the proposed system requires less computational complexity with similar detection performance compared with the conventional LR aided detector.

Systolic Arrays for Lattice-Reduction-Aided MIMO Detection

  • Wang, Ni-Chun;Biglieri, Ezio;Yao, Kung
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.481-493
    • /
    • 2011
  • Multiple-input multiple-output (MIMO) technology provides high data rate and enhanced quality of service for wireless communications. Since the benefits from MIMO result in a heavy computational load in detectors, the design of low-complexity suboptimum receivers is currently an active area of research. Lattice-reduction-aided detection (LRAD) has been shown to be an effective low-complexity method with near-maximum-likelihood performance. In this paper, we advocate the use of systolic array architectures for MIMO receivers, and in particular we exhibit one of them based on LRAD. The "Lenstra-Lenstra-Lov$\acute{a}$sz (LLL) lattice reduction algorithm" and the ensuing linear detections or successive spatial-interference cancellations can be located in the same array, which is considerably hardware-efficient. Since the conventional form of the LLL algorithm is not immediately suitable for parallel processing, two modified LLL algorithms are considered here for the systolic array. LLL algorithm with full-size reduction-LLL is one of the versions more suitable for parallel processing. Another variant is the all-swap lattice-reduction (ASLR) algorithm for complex-valued lattices, which processes all lattice basis vectors simultaneously within one iteration. Our novel systolic array can operate both algorithms with different external logic controls. In order to simplify the systolic array design, we replace the Lov$\acute{a}$sz condition in the definition of LLL-reduced lattice with the looser Siegel condition. Simulation results show that for LR-aided linear detections, the bit-error-rate performance is still maintained with this relaxation. Comparisons between the two algorithms in terms of bit-error-rate performance, and average field-programmable gate array processing time in the systolic array are made, which shows that ASLR is a better choice for a systolic architecture, especially for systems with a large number of antennas.

Computationally Efficient Lattice Reduction Aided Detection for MIMO-OFDM Systems under Correlated Fading Channels

  • Liu, Wei;Choi, Kwonhue;Liu, Huaping
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.503-510
    • /
    • 2012
  • We analyze the relationship between channel coherence bandwidth and two complexity-reduced lattice reduction aided detection (LRAD) algorithms for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems in correlated fading channels. In both the adaptive LR algorithm and the fixed interval LR algorithm, we exploit the inherent feature of unimodular transformation matrix P that remains the same for the adjacent highly correlated subcarriers. Complexity simulations demonstrate that the adaptive LR algorithm could eliminate up to approximately 90 percent of the multiplications and 95 percent of the divisions of the brute-force LR algorithm with large coherence bandwidth. The results also show that the adaptive algorithm with both optimum and globally suboptimum initial interval settings could significantly reduce the LR complexity, compared with the brute-force LR and fixed interval LR algorithms, while maintaining the system performance.

Complexity Reduction Scheme for Lattice Reduction-based MIMO Receiver under Time Varying Fading Environments (시변 페이딩 환경에서 Lattice Reduction 기반 MIMO 수신기를 위한 계산량 감소 기법)

  • Kim, Han-Nah;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.852-861
    • /
    • 2009
  • We propose a complexity reduced Lattice Reduction(LR) scheme for MIMO detection under time varying fading environments. It is found that for successive MIMO transmission instances, the integer matrix P after LR decomposition remains the same or only a few elements of the matrix P are slightly changed. Based on this feature, we perform LR reduction by setting the initial values for P matrix for the decomposition to be the one obtained in the previous instance not starting from the identity matrix. Simulation results reveal that the proposed scheme drastically reduces overall complexity of LR reduction compared to the conventional scheme for various system parameters under time varying channels. We also show that the proposed scheme can be applied to Seysen LR as well as LLL(Lenstra, Lenstra, and Lavasaz)-LR.

Low Complexity Lattice Reduction for MIMO Detection using Time Correlation of the Fading Channels (페이딩 채널의 시간 상관성을 이용한 Lattice Reduction 기반 MIMO 수신기 계산량 감소 기법)

  • Kim, Han-Nah;Choi, Kwon-Hue;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.523-529
    • /
    • 2010
  • We propose a very low complexity lattice reduction (LR) algorithm for MIMO detection in time varying channels. The proposed scheme reduces the complexity by performing LR in a block-wise manner. The proposed scheme takes advantage of the temporal correlation of the channel matrices in a block and its impact on the unimodular matrices during LR process. From this, the proposed scheme can skip a number of redundant LR processes for consecutive channel matrices and performs a single LR in a block. The simulation results investigated in this letter reveal that the proposed detection scheme requires only 43.4% multiplications and 17.3% divisions of LLL-LR and only 50.2% multiplications and 68.2% divisions of the conventional adaptive LR with almost no performance degradation.

Performance Analysis of LR-aided ZF Receiver for MIMO Systems

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.37-43
    • /
    • 2018
  • Lattice-reduction (LR) techniques have been developed for signal detection in spatial multiplexing multiple input multiple output (MIMO) systems to obtain the largest diversity gain. Thus, an LR-assisted zero-forcing (ZF) receiver can achieve the maximum diversity gain in spatial multiplexing MIMO systems. In this paper, a simplified analysis of the achievable diversity gain is presented by fitting the channel coefficients lattice-reduced by a complex Lenstra-Lenstra-$Lov{\acute{a}}z$ (LLL) algorithm into approximated Gaussian random variables. It will be shown that the maximum diversity gain corresponding to two times the number of receive antennas can be achieved by the LR-based ZF detector. In addition, the approximated bit error rate (BER) expression is also derived. Finally, the analytical BER performance is comparatively studied with the simulated results.

LLL Algorithm Aided Double Sphere MIMO Detection (LLL 알고리즘 기반 이중 스피어 MIMO 수신기)

  • Jeon, Myeongwoon;Lee, Jungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.377-380
    • /
    • 2012
  • 격자 감소 (lattice reduction) 알고리즘은 주어진 기저 벡터를 직교에 가까운 기저 벡터로 바꾸어 준다. 그중 대표적인 알고리즘으로 LLL (Lenstra, Lenstra & Lovasz) 알고리즘이 있다. 격자 감소 알고리즘을 이용하여 다중 안테나 입출력 (MIMO) 통신시스템의 선형 수신기(linear detector)의 성능을 향상 시킬 수 있다. 스피어 복호 알고리즘 (sphere decoding algorithm)은 MIMO 통신 시스템에서 사용되는 복호기중 최대 우도 복호기 (Maximum Likelihood Detector)와 비슷한 BER(bit error rate)성능을 가지고 복잡도를 줄일 수 있어서 많이 연구되어 왔다. 이때 스피어의 반지름의 설정이나 트리 검색 구조 방식 등은 복잡도에 큰 영향을 미친다. 본 논문에서는 LLL 알고리즘에 기반하여 스피어의 반지름 설정 및 트리 검색 노드 수를 제한하는 방식으로 스피어 복호 알고리즘의 복잡도를 기존 알고리즘에 비해 크게 낮추면서도 비트 오류률 (BER) 성능 열화를 최소한으로 한 알고리즘을 제안하고 전산 실험을 통해 검증한다.

  • PDF