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Systolic Arrays for Lattice-Reduction-Aided MIMO
| Detection

Ni-Chun Wang, Ezio Biglieri, and Kung Yao

Abstract: Multiple-input multiple-output (MIMO) technology pro-
vides high data rate and enhanced quality of service for wireless
communications. Since the benefits from MIMO result in a heavy
computational load in detectors, the design of low-complexity sub-
optimum receivers is currently an active area of research. Lattice-
reduction-aided detection (LRAD) has been shown to be an effec-
tive low-complexity method with near-maximum-likelihood perfor-
mance. In this paper, we advocate the use of systolic array archi-
tectures for MIMO receivers, and in particular we exhibit one of
them based on LRAD. The “Lenstra-Lenstra-Lovasz (LLL) lattice
reduction algorithm” and the ensuing linear detections or succes-
sive spatial-interference cancellations can be located in the same
array, which is considerably hardware-efficient. Since the conven-
tional form of the LLL algorithm is not immediately suitable for
parallel processing, two modified LLL algorithms are considered
here for the systolic array. LLL algorithm with full-size reduction-
LLL is one of the versions more suitable for parallel processing.
Another variant is the all-swap lattice-reduction (ASLR) algorithm
for complex-valued lattices, which processes all lattice basis vectors
simultaneously within one iteration. Qur novel systolic array can
operate both algorithms with different external logic controls. In
order to simplify the systolic array design, we replace the Lovisz
condition in the definition of LLL-reduced lattice with the looser
Siegel condition. Simulation results show that for LR-aided linear
detections, the bit-error-rate performance is still maintained with
this relaxation. Comparisons between the two algorithms in terms
of bit-error-rate performance, and average field-programmable
gate array processing time in the systolic array are made, which
shows that ASLR is a better choice for a systolic architecture, espe-
cially for systems with a large number of antennas.

Index Terms: Lattice reduction, multiple-input multiple-output
(MIMO) receivers, systolic arrays, wireless communications.

L. INTRODUCTION

Multiple-input multiple-output (MIMO) technology, using
several transmit and receive antennas in a rich-scattering wire-
less channel, has been shown to provide considerable improve-
ment in spectral efficiency and channel capacity [1]. MIMO sys-
tems yield spatial diversity gain, spatial multiplexing gain, array
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gain, and interference reduction over single-input single-output
(SISO) systems [2]. However, these benefits come at the price of
a computational complexity of the detector that may be intolera-
bly large. In fact, optimal maximum-likelihood (ML) detection
in large MIMO systems may not be feasible in real-time applica-
tions as its complexity increases exponentially with the number
of antennas. Low-complexity receivers, employing linear de-
tection or successive spatial-interference cancellation (SIC), are
computationally less heavy, and amenable to simple hardware
implementation [3]-[5]. However, diversity and error-rate per-
formance of these low-complexity detectors are not comparable
to those achieved with ML.

Lattice-reduction-aided detection (LRAD), which combines
lattice reduction techniques with linear detections or SIC, has
been shown to yield some improvement on error-rate perfor-
mance [6]-[8]. Lenstra-Lenstra-Lovdsz (LLL) algorithm [9] is
the most widely used lattice reduction algorithm, and can be
applied to complex-valued lattices [10]. The performance of
complex LLL-aided linear detection in MIMO systems was an-
alyzed in [11]. LLL-based LRAD was also shown to achieve
full receiver diversity [12]. It was also shown that the LR-aided
minimum mean-square-error (MMSE) decoding achieves the
optimal diversity-multiplexing tradeoff [13]-[16]. When ap-
plied to MIMO detection, the average complexity of LLL al-
gorithm is polynomial in the dimension of the channel matrix
(the worst-case complexity could be unbounded [13]). A fixed-
complexity LLL algorithm, which modifies the original version
to allow more robust early termination, has recently been pro-
posedin [17]. In LRAD, LLL algorithm need be performed only
when the channel state changes. If the channel change rate is
high, or a large number of channel matrices need be processed
such as in a MIMO-orthogonal frequency division multiplex-
ing (OFDM) system, a fast-throughput algorithm and the corre-
sponding implementation structure is needed for real-time ap-
plications. To obtain this, we first discuss two variants of LLL
algorithm, suitably modified for parallel processing. Second, we
propose a novel systolic array structure implementing the two
modified LLL algorithms and the ensuing detection methods.

A systolic array [18], [19] is a network of processing ele-
ments (PE) which transfer data locally and regularly with nearby
elements and work rhythmically. In Fig. 1(a), a simple two-
dimensional systolic array is shown as an example. In this case,
the matrix operation D = AB + C is calculated by the systolic
array, where A, B, C, and D are 2 x 2 matrices. The oper-
ation of each PE is shown in Fig. 1(b). The inputs of the sys-
tolic array, the entries of matrices A and C, are pipelined in a
slanted manner for proper timing. Since all PEs can work simul-
taneously, the latency is shorter than with a single processor sys-
tem, and the results of D are outputted in parallel. Systolic algo-
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rithms and the corresponding systolic arrays have been designed
for a number of linear algebra algorithms, such as matrix trian-
gularization [20}, matrix inversion [21], adaptive nulling [22],
recursive least-square [23], [24], etc. An overview of systolic
designs for several computationally demanding linear algebra
algorithms for signal processing and communications applica-
tions was recently published in [25]. While systolic arrays allow
simple parallel processing and achieve higher data rates with-
out the demand on faster hardware capabilities, the existence of
multiple PEs implies a higher cost of circuit area. Thus, time ef-
ficiency is traded off with circuit area in hardware design. For
the application we are advocating in this paper (MIMO detec-
tors), systolic arrays offer an attractive solution, as we must cope
with a high computational load while requiring high through-
put and real-time operation. Systolic arrays have been previ-
ously suggested for MIMO applications. In [26], the authors
proposed a universal systolic array for adaptive and conven-
tional linear MIMO detectors. In [27], a reconfigurable systolic
array processor based on coordinate rotation digital computer
(CORDIC) [28] is proposed to provide efficient MIMO-OFDM

baseband processing. Also, matrix factorization and inversion

are widely used in MIMO detection, with systolic arrays used to
increase the throughput {5], {29].

In this paper, our objective is to provide a novel systolic ar-
ray design for LLL-based LRAD. The ideas are described from
a system-level perspective instead of detailed discussion on the
hardware-oriented issues. The system model and how LRAD
works are briefly described in Section II. Since the original LLL
algorithm {8]-[15] is not designed for parallel processing, and
hence is not suitable for systolic design, two modified LLL al-
gorithms are considered here (Section III). Note that we are
not claiming the two algorithms works better than the original
LLL in terms of the LRAD bit-error-rate (BER) performance.
First, we improve on the format of conventional LLL algorithm
by altering the flow of size-reduction process (we call it “LLL
with full size-reduction,” or FSR-LLL). FSR-LLL is more time-
efficient in parallel processing than the conventional format, and
hence suitable for systolic design. We also consider a variant of
the LLL algorithm called “all-swap lattice reduction (ASLR),”
which was first proposed in [30] for real lattices, and derive its
complex-number version. A crucial difference between ASLR
and LLL algorithm is that with ASLR all lattice basis vectors
are simultaneously processed during a single iteration. In both
algorithms, in order to simplify the systolic array operations
we replace the original Lovasz condition [9] of LLL algorithm
with the slightly weaker Siegel condition [31]. Surprisingly, for
LR-aided linear detections the BER performance with Siegel
condition under the proper parameter setting is just as good as
the one using Lovasz condition, However, for LR-aided SIC, the
performance with Lovész condition is still slightly better due
to less error propagation. The mapping from algorithm to sys-
tolic array is introduced in Section IV. In our design, ASLR
and FSR-LLL can be operated on the same systolic-array struc-
ture, but the external logic controller is also required to control
the algorithm flow. Additionally, since ASLR was originally de-
signed for parallel processing, a systolic array running ASLR is
on the average more efficient than one running FSR-LLL. Sim-
ulation results also show that ASLR-based LRAD has a BER
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Fig. 1. (a) Two-dimensional systolic array performing matrix calculation
D= A . B+ C, where a;;, b;;,ci;,di; are the (¢, 7) entries of the
matrix A, B, C, and D and (b) the operation of each processing ele-
ment.

performance very similar to that of LLL algorithm. Compari-
son between our proposed design and the conventional LLL in
field-programmable gate array (FPGA) implementation shows
that the systolic arrays do provide faster processing speed with a
moderate increase of hardware resources. After the channel state
matrix has been lattice-reduced, linear detectors or SIC can also
be implemented by the same systolic array without any extra
hardware cost, which is discussed in Section V.

The following notations are used throughout the remain-
ing sections. Capital bold letters denote matrices, and lower
case bold letters denote column vectors. For example, X =
Ix1,X2, "', Xp] i a matrix with m columns of x; to X,,,. The
entry of a matrix X at position (%, ;) is denoted by z; ;, and the
kth element of a vector x is denoted by zx. The submatrix (sub-
vector) formed from the ath to bth rows and mth to nth columns
of X is denoted by X 4.4, - The notations (-)*, ()7, (-}#, and
(-)! are used for conjugate, transpose, Hermitian transpose, and
Moore-Penrose pseudo-inverse of a matrix, respectively. ||x[f is
the Euclidean norm of the vector x. R(-} and (-) are the real
and imaginary parts of a complex number, respectively. [z] in-
dicates the closest integer to x. If z is a complex number, then
[z] = [R(z)] + i [$(z)]. I, and Oy, are m x m identity and
null matrices, respectively.

II. LATTICE-REDUCTION-AIDED DETECTION
A. System Model

We consider a MIMO system with m transmit and n receive
antennas in a rich-scattering flat-fading channel. Spatial mul-
tiplexing is employed, so that data are transmitted as m sub-
streams of equal rate. These substreams are mapped onto M-ary
quadrature amplitude modulation (QAM) symbols. Let x de-
note the complex-valued m x 1 transmitted signal vector, and
y the complex-valued n x 1 received signal vector. The base-
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band model for this MIMO system is

y=Hx+n D
where H is the n x m channel matrix: Its entries are uncor-
related, zero-mean, unit-variance complex circularly symmetric
Gaussian fading gains h;;, and n is the n. x 1 additive white com-
plex Gaussian noise vector with zero mean and E[nn’!] = ¢2L
The average power of each transmitted signal z; is assumed to
be normalized to 1, i.e., E[xx!] = 1. Additionally, we assume
that the channel matrix entries are fixed during each frame inter-

val, and the receiver has perfect knowledge of the realization of
H.

B. Linear Detection

In linear detection, the estimated signal % is computed by first
premultiplying the received signal y by an n X m “weight ma-
trix” W. The two most common design criteria for W are zero-
forcing (ZF) and MMSE. In ZF detection, the weight matrix
Wz is set to be the Moore-Penrose pseudo-inverse H' of the
channel matrix H, i.e.,

%zr = Wzpy =H'y = x+ H'n. 2)
It is known that ZF detection suffers from the noise enhance-
ment problem, as the channel matrix may be ill-conditioned.
Under the MMSE criterion, the weight matrix W' is chosen in
such a way that the mean-squared-error between the transmitted
signal x and the estimated signal % is minimized. The mean-
squared-error (MSE) is defined as MSE 2 E [Ix - %% =
E [(x — Wy)# (x — Wy)]. The weight matrix W that min-
imizes the MSE is

Winse = (HPH + 0°T) 'HY. (3)
It is well known that, as 02 — 0, the weight matrix Wyiyse ap-
proaches Wzp. Since Wnysy takes noise power into consid-
eration, MMSE detection suffers less from noise enhancement
than ZF detection. In [8] and [32], it is shown that MMSE is
equivalent to ZF in an extended system model, i.e.,

fmmse = Wynsey = Hly = H"H)HYy

_| B | v
E_[olm }amdz~{0mXl }

Comparing (2) with (4), it follows that the two detection meth-
ods can share the same structure in systolic-array implementa-
tion, which we shall elaborate upon in Section IV.

4
where

5

C. Lattice-Reduction-Aided Linear Detection

The idea underlying lattice reduction is the selection of a ba-
sis vector for the lattice under some goodness criterion [33]. We
first observe that, under the assumption of QAM transmission,
the transmitted vector x is an integer point of a square lattice
(after proper scaling and shifting of the original QAM constel-
lation). By interpreting the columns of the channel matrix H as
a set of lattice bas~is vectors, Hx is~ also a lattice point. If two
basis sets H and H are related by H=H - T, T a unimodular

—
>
>
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Fig. 2. Block diagram of linear lattice-reduction-aided detection.

matrix, they generate the same set of lattice points. In MIMO
detection, the objective of the lattice reduction algorithm is to
derive a better-conditioned channel matrix H. In this paper, we
focus on the complex-valued LLL algorithm [10], [11]. More
details about the LLL algorithm will be provided in Section III.

After lattice-reduction of the channel matrix, we can perform
the linear detection, as described in subsection II-B, based on

H. Consider ZF first. The estimated signal X can be written as
x=H'y =H' (HT)(T 'x) +n) =T 'x+ H'n. (6)

Since X is no longer an integer vector, the simplest but subop-
timal way of estimating T~ 'x is to round % element-wise to
the nearest integer. Let X, be an estimate of T~'x after round-
ing. The final step is to transform X, back into an estimate of x,
which is done by multiplying X, by the unimodular matrix T.
Since the vector entries after the transformation could lie out-
side the QAM constellation boundary, we finally quantize those
points outside the boundary to the closest constellation point,
ie., xLg = Q(T%,). Fig. 2 shows the block diagram of LR-
aided ZF detection for MIMO. It is easy to see that the same
structure can also be used for MMSE detection, by simply re-
placing H and y with the extended matrix H and the vector y
defined in (5), respectively. The remaining operations are the
same as in ZF.

D. LR-Aided Successive Spatial-Interference Cancellation

Besides being suitable linear detection systolic design can be
used to exploit the regularity of SIC. In [8], it is shown that
LR-aided SIC outperforms linear detection methods, while ex-
hibiting a complexity comparable to linear detection. The LR-
aided SIC can be conveniently described in terms of the QR de-
composition of the reduced channel matrix. Here, we summarize
briefly the procedure of LR-aided ZF-SIC only, as the L.R-aided
MMSE-SIC can be derived in a similar way. Let the QR de-
composition of the reduced channel matrix be H= QR. First,
multiply Q* to y in (1), we obtain

véQHy:f{z+QHn N
where z = T~'x. Then, we can solve for z layer by layer start-
ing from the bottom to the top, i.c.,

V; D 2
3 = [T—J , vi=v—(Ri,)%

Tii

&)

where ¢ starts from m to 1 and 2; is the estimate of each entry of
z.



484 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 13, NO. 5, OCTOBER 2011

L. TWO VARIANTS OF LLL ALGORITHM

In this section, we introduce two variants of LLL algorithm
which are more time-efficient than the classical LLL algorithm
when using parallel processing. Since systolic arrays yield a
simple form of parallel processing, our systolic array design for
LRAD is based on these two algorithms.

We begin the discussion with the definition of LLL-reduced
lattice. Let H (an n x m matrix) be a set of lattice basis vectors,
with QR decomposition H = QR. The basis set H is complex
LLL-reduced with parameter § (1/2 < § < 1), if the following
two conditions are satisfied {10], [11]

(a)
A Tis
pig =L, R <5
r@,z
and [S(pi ;)| <3, 1<i<j<m,(9)
(b)
Ti—1 {'ﬁ‘il2
- < ——, 2<i<m. (10)
Ti-1,4~1 |’I"i_.1’¢-1§

The second condition in (10) is called the Lovdsz condition, and
the process to make the basis set satisfy (9) is called size reduc-
tion. In the standard form of LLL algorithm considered in the
literature [8]-115], size reduction applies only to one column of
H during a single iteration. Now, systolic arrays, allowing sim-
ple parallel processing, are capable of updating the whole matrix
without introducing extra delays. Hence, our proposed systolic
array is first designed based on the LLL algorithm in a different
form, which we call it “LLL algorithm with full size reduction
FSR-LLL.”

A. LLL Algorithm with Full Size Reduction (FSR-LLL)

Table 1 shows the LLL algorithm with full size reduction.
In the following discussion, we refer to the lines in Table 1.
There are three main differences between FSR-LLL and the con-
ventional complex LLL algorithm,! although the lattice reduced
bases from both algorithms are still the same. First, the full size
reduction {lines 4-10) is executed in each iteration of the while
loop (line 3), which means that all columns of R and T are
size-reduced at the beginning of each iteration. The advantage
here is that, once condition (10) is also fulfilled after full size
reduction (i.e., no k' is found in line 11), then the FSR-LLL
can immediately end the process (line 20). For example, sup-
pose that k£ equals 3 at current iteration. Since all columns in R
and T are size-reduced after full size reduction, if no k' can be
found in line 11 (a search that a systolic array can make in par-
allel), then no further processing is needed in FSR-LLL. How-
ever, in the conventional LLL format, the process will end until
columns 3 to m are sequentially size-reduced. With a systolic-
array implementation, FSR-LLL is faster, and its efficiency is
especially apparent when m is large. The second difference is
that the Givens rotation (lines 13-16) is executed before the col-
umn swap (line 17). This is because the Givens rotation pro-
cess can work in parallel with full size reduction, whereas the

1For comparison, the interested readers can refer to the Table I in [11] for
the conventional complex LLL algorithm. The Tables 1 and 2 in this paper are
presented in the similar format as the one in [11]. All the simulation results
related to the conventional LLL in this paper are also based on the same table.

Table 1. LLL algorithm with FSR.
INPUT Q¥ R
ouTPUT Q" =Q¥ R=R, T
(1) Initialization T = I,
(2) k=2
(3} While k<m

J Full size reduction }

(4) for j=m, .- ,2
(5) for i=4-1,---,1
(6) tag = [ri/riil
m Riu; = Raij — #ijRaa
(8) Timys = Trmy = pi,i Tiimi
(9 end
(10) end
(11} Find the smallest k' between k ~ m
such that § — Irkz,lyk:/rk/_ltkz_lfg > |7'k/’k»|2 S -1 =1 2
(12) If ¥ exists
13y mo=ree /e w ||
14y me=rep/lry-1wwl
(15) G = [ 77;— 2 ]
M2 Th
(16) Rp-twp-1:m:=G Ry1.pk-1:m,
Qllcj:—l:k’,lzn = G'Qﬁ—z;k',l;n
(17)  Swap columns ¥’ — 1 and & in R and T
(18) k= max{k - 1,2}
(19)  else
(20} ki=m+1
(21) end
(22) end

columns swap cannot. This point will be made clear in subsec-
tion IV-A. Third, the QR decomposition Q”H = R is consid-
ered as the input of the algorithm, instead of H = QR. From
line 16, the Givens rotation matrix G applies to the same two
rows of Q¥ and R, which simplifies the design of the systolic
array. Additionally, after FSR-LLL, Q¥ is ready for calculating
the pseudoinverse of H for linear-detection.

B. All-Swap Lattice Reduction (ASLR) Algorithm

The ASLR algorithm is a variant of the LLL algorithm, and
was first proposed for real number lattices only [30]. Table 2 de-
scribes its extension to a complex version. One significant differ-
ence between FSR-LLL and ASLR is that every pair of columns
k and k — 1 with even (or odd) index k could be swapped simul-
taneously. The algorithm begins with full size reduction, which
is the same as FSR-LLL. Givens-rotation and column-swap op-
erations (same as in Table 1, lines 13-17) should be executed on
all possible even (odd) % that violate the condition in (10), and
then start another iteration with the indicator variable “order”
set to odd (even). If condition (10) holds for all even (odd) &,
Givens rotation and columns swap will not be executed. Mean-
while, we can immediately check for all odd (even) k instead.
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Table 2. ASLR algorithm.

INPUT Q7 R
ouTPUT Qf =

(1} Initialization

QY R=R, T
T=1,
(2) order = EVEN
(3} While {any swap is possible in lines (9) or {16) )

Full size reduction

(4) Execute lines 4 ~ 10 in Table I

Givens rotation and column swap |
(5) If order = EVEN
(6) Ité — ""lc-l,k/7’k-uc~1f2

< |rk‘;¢[2/\rk,l,km1|2 for all even k

(%) Go to line (13)
(8) else
(9) Execute lines 13 ~ 17 in Table I for all even k between

2 ~ m such that § — |up_, &7 > {Tk,klz/h'k—l,kvl‘g

(10) order = ODD

(11) end

(12)  else

(18) 18— ey /miesge < sl /lre s amf? for all odd &

(14) Go to line (6)

(15) else

(16) Execute lines 13 ~ 17 in Table I for all odd k between
2 ~ m such that § — |Nk~1,k12 > |rk,k|2/frk,17k,1]2

(17) order = EVEN

(18) end

(19)  end

(20) end

Matrix R is already full-size reduced, with no need to start the
next iteration with full size reduction (Table 2, line 7 or 14). If
neither an even nor odd % violates condition (10) after full size
reduction, the ASLR process ends.

C. Replacing Lovdsz Condition with Siegel Condition

From the previous discussion, it is clear that all basis vectors
are size reduced within one processing iteration of full size re-
duction. Additionally, according to line 11 in Table 1 and lines 6
and 13 in Table 2, the lattices processed by FSR-LLL and ASLR
both satisfy the Lovisz condition in (10). Therefore, we can con-
clude that these two algorithms also generate LLL-reduced lat-
tice. Consequently, like the conventional LLL, FSR-LLL-aided
and ASLR-aided detection also achieves full receive diversity in
MIMO system [11], [12].

The Lovasz condition involves two diagonal elements and one
off-diagonal element in the matrix R. In order to simplify the
data communication between processing elements in the systolic
array, we relax the Lovasz condition by replacing it with

1)

where § lies in the range (1/2, 1), the same as for Lovasz condi-
tion. The condition (11) is also called Siegel condition [31], and

it is weaker than the Lovasz condition because

Ti—1,i < \Tii|2

<6-
}71 1,i— 11

,2< e < m.

12)

oq
l\Jl»—-\

Ti—1,4-1

The first inequality follows from (9). Similar approximation as
in (11) can be found in [34]. The advantage of using this new
condition is that only two neighboring diagonal elements of R
are involved. We will have more discussion on the impact of de-
signing systolic array with this new condition in Section IV. An-
other advantage comes from the fact that the new condition
check can be done by taking the square-rootin (11). In hardware
implementation, it implies that we can save precision bits by
storing |r; ;] /|ri_1,i—1] rather than |r; ;|2 /|r;—1 ;1 |%. Addition-
ally, the condition check can be done without a division, simply
by comparing the value of |r; ;] and /6 — 1/2|r;_1 1], where
/0 — 1/2 is a pre-computed constant once § is determined. In
the balance of this paper, when we refer to FSR-LLL and ASLR
we mean FSR-LLL and ASLR with Siegel condition.

Since Siegel condition is weaker than Lovész condition, one
might expect the performance of the lattice reduction algorithm
with condition (11) to be worsened. Yet, by a proof similar to
that in [11], [12] we can show that the LLL algorithm with
Siegel condition also achieves maximum receive diversity in
MIMO systems. In the proof of LLL-aided detection achieving
full diversity [11], [12], the key step and the only step involv-
ing the LLL-reduced conditions is that the orthogonality defect
K (x > 1) of the LLL-reduced basis set H is upper bounded by

oy I, Ihlf” ( 2
det (HHH) 28 -1

where h;’s are the columns of H. In particular, (13) also holds
for the lattices reduced by LLL algorithm with Siegel condition.
This can be justified by the same proof as in [11, Appendix B],
whose details will be omitted in this paper. Hence, the LLL al-
gorithm with the Lovasz condition replaced by the Siegel condi-
tion also achieves maximum diversity in MIMO system. How-
ever, achieving maximum receive diversity does not automati-
cally imply that the BER performance is as good as using the
conventional LLIL algorithm. One can easily observe that if §
is very close to 1/2, condition (11) is almost always true, Thus,
the Givens rotation and column swap steps in the reduction algo-
rithm would seldom be performed, which causes the BER per-
formance to be much worse than with conventional LLL. On the
contrary, as 4 approaches 1 one can expect the performance of
FSR-LLL and ASLR to be closer to the conventional LLL. In
Fig. 3, we show the empirical cumulative probability functions
of the orthogonality defect x for 4 x 4 channel matrices under
three different reduction algorithms. The results of FSR-LIL
and ASLR overlap for all three values of 4, which implies that
the effects of these two method on lattice reduction are almost
the same. As ¢ = 0.99, FSR-LLL and ASLR give a result close
to the LLL with § = 0.75, which is a very common setting
as documented in previous works [8], [9], [12]. For § = 0.51
and 0.75, the gap between LLL and FSR-LLL (ASLR) is much
larger than for 6 = 0.99. In subsection IV-C, we will show that
for ¢ equal to 0.99, the BER performance of LR-aided linear
detections using FSR-LLL and ASLR is not worse than the one

m&gﬁﬁ
(13)
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Fig. 3. The empirical cumulative probability functions of the orthogonality
defect « for the 4 x 4 channel matrices under three different reduction
algorithms.

using the conventional LLL with the same § value. Based on
these results, in our systolic array design we choose § = 0.99.

IV. SYSTOLIC ARRAY FOR TWO
LATTICE-REDUCTION ALGORITHMS

From Fig. 2, the whole process of LRAD can be viewed as
taking two steps: Lattice reduction for the channel matrix, and
detection. In this section, we exhibit our systolic array design
for LLL lattice reduction algorithm. The ensuing linear detec-
tion or SIC on systolic array will be discussed in Section V. In
the following discussion, we assume that the channel matrix has
been QR decomposed. It is known that quadratic-residue dif-
fuser (QRD) can be implemented in systolic array based on a se-
ries of Givens rotations, since Givens rotations can be executed
in a parallel manner [20]-[22]. Since the conventional systolic
array for QRD usually contains square root operations, which
are computationally intensive in hardware implementation, a
square-root-free systolic QRD based on squared Givens rota-
tions (SGR) can be used (the interested readers can refer to [29],
[35]). In [8], it is also shown that the sorted QRD (SQRD) can
reduce the number of column swaps in the LLL algorithm, and
hence leads to less processing time. However, it also requires
higher hardware complexity and latency to implement SQRD
than the conventional QRD [36].

A. Systolic Array for FSR-LLL

In the following, we assume a 4 x 4 MIMO system (i.e., m =
4, n = 4) and illustrate the proposed systolic algorithm in three
parts: Full size reduction, Givens rotation, and column swap.

A.1 Full Size Reduction

The systolic array for the remaining parts of LRAD is shown
in Fig. 4(a). Four different kinds of PEs are used, viz., diagonal
cells, off-diagonal cells, vectoring cells, and rotation cells. For
the full size reduction part, only diagonal and off-diagonal cells
are needed: The operations of these two types of PEs are shown
in detail in Fig. 4(b). The vectoring cell and rotation cell will be

introduced with the Givens rotation description. There is a slight
difference between the off-diagonal cells in the upper-triangle
part and those in the lower-triangle part. Fig. 4(b) shows only the
off-diagonal cell in the upper-triangle part. Those off-diagonal
cells in the lower-triangle part have y;, and c¢;, come from the
top, while ¢y leaves from the bottom. Except for this minor
difference in the data interface, the operations are the same as
the off-diagonal cells in the upper-triangle part. Additionally,
in Fig. 4(b) the dotted lines represent the logic control signals
transmitted between cells, and the solid lines represent the data
transmitted. To initialize the process, each element of the ma-
trices R and Q¥ (denoted as r and g, respectively, in Fig. 4(b))
from QR decomposition are stored in the PE at the correspond-
ing position. For example, g; ; and r; ; are stored in the corre-
sponding diagonal cell D;;. The off-diagonal elements g; ; and
ri,; are stored in the off-diagonal cell O;;. Additionally, the el-
ements of the unimodular matrix T (denoted as ¢ in Fig. 4(b))
are also stored in the arrays, with T initially set to the identity
matrix.

Fig. 5 shows the overall processes of the full size reduction
in the systolic array. In this stage, two major processing modes
are defined in each diagonal and off-diagonal cell, the size re-
duction mode and the data mode as detailed in Fig. 4(b). In
the size reduction mode, the objective of each cell is to make
condition (9) valid. On the other hand, the cell only performs
data propagation in the data mode. The cell decides to work
in either mode depending on the occurrence of the logic con-
trol signal “#.” For simplicity, we assume the cells execute all
operations in the data mode or the size-reduction mode in one
normalized cycle.? At T = 0, the external controller sends in the
logic control signal “#” to cell D33 through cell Dy4. At T=1,
cell D33 works in the data mode due to the control signal “#”
and spreads out the “#” logic control signal to the neighboring
3 cells. Meanwhile, D33 sends out the data (3 3, t373)(*) to cell
O34. Note that the superscript (*) is a tag bit attached to the
data, which indicates that the data are sent out by a diagonal
cell. The occurrence of a tag bit (*) will drive the off-diagonal
cell to compute y, and use u to update the data stored in that
cell. As aresult, at T = 2, cell O34 sends out the newly com-
puted u to the two neighboring cells Oz4 and Dy4. At next time
instant (1" = 3), the u signal generated by O34 meets the data
coming from cell Og3 (O43) inside the cell Og4(Dyy), and ex-
ecutes the size reduction update. At the same time instant, data
(ra,2, tgyz)(*) enter cell Oa3. As cell Ozy did at T' = 2, cell Oas
computes y, updates (ry3,t2 3), and sends out y to the neigh-
boring cells O3 and D33. The most important fact here is that
cell Oq3 also propagates the data (73 2, tg’g)(*) to cell Oq4, and
thus starts the column operations between column 2 and col-
umn 4 at 7' = 4. Similarly, the column operations between
column 1 and column 4 begins at T = 6 as (r2 2, tzvg)(*) enter
cell O14. Essentially, full size reduction is a series of column
operations between column j and columns j — 1,5 — 2,.--, 1,
for all 2 < j < m, and we can conclude the following facts for
an m x m MIMO system.

[Fact 1] In this systolic flow, the column operation between col-
umn j and column i (i < j) begins at T = m + j — 2{ as

2The real hardware cycle counts could be multiples of the normalized cycle.
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Fig. 4. (a) The systolic array for the linear LRAD of 4 x 4 MIMO sys-
tem and (b) the operations of diagonal and off-diagonal cells in the
systolic array. (“” is an indicator bit used to control the flow of the
algorithm, as explained in subsection IV-A).

(T30 ti,i)(*) enters cell O;;.

Proof: Data (r; ;, tm)(*) leaves cell D;; at T' = m — 4, and
it takes j — 4 cycles to have (r;;, ti’i)(*) propagates from cell
D;; to cell OIJ O
[Fact 2] All column operations on column j end at T = 2m +
Jj—3incell O,,;.

Proof:  In this systolic flow, the last column operation on
column j is always between column j and column 1, which
starts at T = m + j — 2 in cell Oy; according to
fact 1. It takes m — 1 more cycles to propagate 1 from cell Oy j
to cell Oyy,; and finish the column operation. a
[Fact 3] The full size reduction ends at 7" = 3m — 3, when all
updates on column m are done.

Fig. 5.
array.

Flow chart of the full size reduction operations in the systolic

Proof; The full size reduction ends when column m finish
all the column operations. Therefore, it follows the result in fact
2 that the last step is at T = 3m — 3. O

Referring back to the example mentioned in subsection I1I-A,
we can have a more concrete view about the advantage of FSR-
LLL over the conventional LLL form when a systolic array is
used. If FSR-LLL is applied, the systolic array takes a total
of 3m — 3 cycles to end the all processes. However, for non-
systolic LLL, it takes 2m + j — 3 to process column j, and
all column operations cannot be done in parallel. So, the total
time to perform size reduction in non-systolic LLL would be
doita(2m+j—3) = 2.5m® — 6.5m + 3 cycles in that ex-
ample. In this case, as m increases beyond 3, the advantage of
FSR-LLL over the conventional format becomes significant.

A.2 Givens Rotation

As mentioned in subsection III-C, we use Siegel condition
in the lattice reduction algorithm, which only relates two r ele-
ments in the neighboring diagonal cells. Hence, this condition
can be checked during a full size reduction step. For example, in
Fig. 5at T = 1, cell D33 sends data r3 3 to cell Doy along with
the “#” signal. At the next time instant, cell D4y will check this
condition based on |r3 3|?/|r2,2|? and also generate the logic
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Fig. 6. The operations of vectoring cells and rotation cells in the systolic
array.

control signal “swap” (see Fig. 4(b)). If § — 1/2 is greater than
|ri,i|2/|ri—1,4—1|? then “swap” is “true,” and drives the vector-
ing cell to work. The operations of vectoring and rotation cells
are shown in Fig. 6. The vectoring cell zeros out the input data
3 by the Givens rotation matrix G, which is calculated based on
Table 1 lines 13 to 15. The rotation cell simply rotates the input
data with the angle © given by the neighboring vectoring cell.
Hence, the vectoring and rotation cells also work in a systolic
way, with the rotation angle © propagating between cells. As
shown in Fig. 4(a), there are 3 rotation cells and 1 vectoring cell
between every two consecutive rows of the systolic array. These
cells perform the Givens rotation to the R and Q¥ data in those
two rows. The vectoring cell is located between cells D;; and
O;_1,; because the Givens rotation step is executed prior to the
column-swap step in FSR-LLL, and data r; ; need be zeroed so
that the matrix R is still upper triangular after column swap.

Note that Givens rotation only applies to rows k¥’ and &’ — 1
during one iteration of FSR-LLL if &’ exists (lines 1316 in Ta-
ble 1). However, every D;; (i = 1,---,m — 1) could generate
the “swap” signal during the full size reduction step. Therefore,
we need a direct access from the external controller to each di-
agonal cell in order to control the data path between the diagonal
cell and the vectoring cell. Namely, only cell Dy can pass the
signal “swap” to the vectoring cell and perform the Givens rota-
tion to rows &’ and k' — 1. In Fig. 4(a), we use a “switch” symbol
between each pair of a diagonal cell and a vectoring cell to rep-
resent the control by the external controller. Only one switch is
turned on during one iteration.

Additionally, a Givens rotation on rows &’ and k' — 1 can be-
gin right after 7 - is updated during the full size reduction
step. For example, 73 4 is updated at T = 2 as shown in Fig. 5,
and Givens rotation on rows 3 and 4 could start as early as T = 3
without any interference to the remaining operations of full size
reduction. This way, the time necessary to perform Givens rota-
tions can be partially hidden by the full size reduction and this
is the reason why we want the Givens rotation to occur prior to
column swap in our design. For hardware implementation, one
could consider using only one rotation cell between every two
neighboring rows or the systolic array to reduce the hardware
complexity. This will not lead to significant increase in time if
we consider performing Givens rotation and full size reduction
in parallel.

A3 Column Swap

The columns &k’ and k&’ — 1 of R (and T') should be swapped,
after the Givens rotation is done. However, it is possible that the
column swap be partially overlapped in time with size reduction
and Givens rotation. For example, the column swap could begin

after R being rotated but prior to Q* being updated since there
is no need to swap columns of Q.

The FSR-LLL stops when there is no possible column swap,
i.e., a k' in Table 1, line 11, does not exist. The system flow
(lines 3, 18, and 20 in Table 1) is controlled by the external
processor. The lattice reduced matrices R and Q¥ and the uni-
modular matrix T stay in the PEs. The systolic array along with
these matrices will be used for linear detection, as described in
Section V below.

B. All-Swap Lattice Reduction (ASLR) Algorithm

The ASLR algorithm can also be performed by the systolic
array shown in Fig. 4(a). The process of full size reduction is
the same as in Fig. 5. During full size reduction, the Siegel con-
dition is also checked in each diagonal cell D11—Dypy—1,m—1. If
the current value of “order” is even (odd), then the “switch” be-
tween each cell Dy_q ;.1 with even (odd) index k and the vec-
toring cell is turned on by the external controller. Consequently,
for every even (odd) index k, Givens rotation between rows k—1
and k could be executed if needed. As for the column swap step,
more than one pair of columns could be swapped during one it-
eration, but all these pairs are swapped in parallel. Hence, the
time spent on columns swap is the same as on swapping a sin-
gle pair of columns. Based on this observation, we can expect
the systolic ASLR to work more efficient than the systolic FSR-
LLL. Comparisons between these two algorithms in terms of
bit-error-rate performance and of efficiency in execution time
are deferred to the next subsection.

Note that in our description we limit the applications of
this systolic array only to an m x m MIMO system. For
m x m MMSE-LRAD, although the matrix Q¥ is m x 2m
(the extended channel model in (5)), we can treat the subma-
trix Q{{m (m=1):2m another square matrix, and store each ele-

ment of Qf{m’(m +1):2m in the PE at the cgrresponding positipn.
Namely, g; ; and g;_ ;4 should be stored in the same PE, which
still keeps the systolic array square.

C. Comparison Between FSR-LLL and ASLR Algorithm

First, we compare the two algorithms in term of BER per-
formance, and also compare them with the conventional LLL
algorithm. In our simulation, 4-QAM is assumed for the trans-
mitted symbols. The constant § is set to 0.99 in all algorithms
for fair comparison. Let Ej, be defined as the equivalent energy
per bit at the receiver, and thus E, /Ny is m/(0? log, M). The
Fig. 7(a) shows the BER results of minimum mean-square-error
LRAD (in 4 x 4 and 8 x 8 MIMO systems) based on FSR-LLL
(denoted as MMSE-FSR), ASLR algorithm (denoted as MMSE-
ASLR) and the LLL algorithm (denoted as MMSE-LLL). The
BER results for ML detection and MMSE without lattice reduc-
tion are also shown for comparison. As § = 0.99, the FSR-LLL
and ASLR work as well as LLL algorithm, and even slightly bet-
ter in the case of m = 8. It clearly shows that using the insignifi-
cantly weaker Siegel condition does not deteriorate the BER per-
formance of linear detections in an MIMO system as compared
to the conventional LLL. In Fig. 7(b), the BER performance of
an 4 x4 MIMO system using LR-aided MMSE SIC based on dif-
ferent lattice reduction algorithms are shown. Unlike the linear
detection case, the LLL-aided SIC works better than the other
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Fig. 7. BER performance of FSR-LLL and ASLR- based MMSE LRAD:
(a) Linear detection (4 x 4 and 8 x 8 MIMO systems) and (b) SIC (an
4 x 4 MIMO systems).

two algorithms. Since the detection of the first layer in SIC dom-
inates the overall performance, it implies that due to Siegel con-
dition the FSR-LLL-reduced or the ASLR-reduced channel pro-
vides lower SNR for the first layer in SIC than the one given by
the conventional LLL. Additionally, FSR-LLL and ASLR lead
to almost the same results in all three MIMO systems, which
is consistent with the results in Fig. 3. Hence, we can conclude
that although FSR-LLL and ASLR give different lattice reduced
matrices, the LRAD based on these two algorithms have very
similar BER performance.

Next, we compare the efficiency of the systolic array for both
algorithms. It is known that the number of iterations of FSR-
LLL and ASLR depends on the condition number of the channel
matrix. If H is well-conditioned, lattice reduction takes less it-
erations, and thus less cycles in the systolic array. Since both
algorithms begin with full size reduction, the total execution
time is fully determined by the number of column swaps in the
overall process. Less column swapping implies less iterations.
Fig. 8 shows the average number of column swaps in FSR-LLL
and ASLR-aided MMSE detection (with Ej, /Ny fixed at 20 dB)
in m x m MIMO systems (m = 4-16). Note that for ASLR
we count all the even or odd columns swaps during one itera-
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Fig. 8. The average number of column swaps in FSR-LLL, ASLR and
LLL-aided MMSE detection in m x m MIMO system with £, /N fixed
at 20 dB.
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Fig. 9. The average number of floating point operations in FSR-LLL,
ASLR and LLL-aided MMSE detection in m x m MIMO system with
Ey,/Np fixed at 20 dB.

tion as only one swap since they are executed in parallel. In an
4 x 4 MIMO, the difference between the two algorithms is al-
most negligible. However, as the number of antennas grows, the
advantage of ASLR becomes significant. For m > 8, ASLR has
less than 65% the column swaps comparing to FSR-LLL. Based
on BER performance and time-efficiency comparisons, ASLR
should be a better algorithm to be applied on our systolic array,
especially with a large number of antennas.

For comparison, the results of the conventional LLL with
6 = 0.99 and 0.75 are also shown in Fig. 8. As expected, LLL
with § = 0.99 has a higher complexity than LLL with § = 0.75.
Furthermore, the conventional LLL has a much higher average
number of column swaps than FSR-LLLL and ASLR have in the
higher-dimensional MIMO system (m > 8). However, it is not
fair to conclude that the complexities of FSR-LLL and ASLR
are much lower than the conventional LLL; in fact, full size re-
ductions are performed in the former two algorithms, and full
size reduction needs more computation efforts than the conven-
tional size reduction in LLL. In Fig. 9, we compare the number
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Fig. 10. Comparison between the fixed-point and floating-point lattice
reduction algorithms using ZF-SIC in an 4 x 4 MIMO system.

of floating point operations (flop) in LLL, FSR-LLL, and ASLR
using the same settings as in Fig. 8. The flops are counted in
terms of number of real additions and real multiplications. One
complex addition is counted as two flops (two real additions)
and one complex multiplication is counted as six flops (four real
multiplications and two real additions). The complexity of QR
decomposition is neglected, since this is done only once at the
beginning of the three algorithms. It is shown that LLL with
0 = 0.99 has the highest complexity among the three. Under
the same (= 0.99) setting, FSR-LLL and ASLR have a much
lower computational complexity than LLL. On the other hand,
the complexity of LLL with § = 0.75 is just slightly higher
than FSR-LLL and ASLR, even though the average number of
column swaps of LLL with § = (.75 is more than two times
larger than the one of ASLR for m > 10. This implies that the
process of full size reduction introduces some additional com-
plexity. However, thanks to the (insignificantly) weaker Siegel
condition, the complexities of ASLR and FSR-LLL for m > 10
are less than 50% of the complexity of LLL with the same §
setting.

To further explore the advantage of using systolic array, we
implement our proposed architecture for an 4 x 4 MIMO sys-
tem onto FPGA. We performed our design using Xilinx System
generator 11.5 (XSG) block-set in the Simulink design environ-
ment. A verilog hardware description language (HDL) code is
then generated automatically by XSG and is synthesized by Xil-
inx XST. The place and route is done by Xilinx ISE 11.5. The
word-length of R, Q¥, T, and y are set to (18,13), (14,13),
(8,0) and (3,0}, respectively. As mentioned in subsection III-C,
the division in Siegel condition check can be avoided by using
a comparator. The divisions in the Givens rotation are imple-
mented by the Newton-Raphson iterative algorithm [37]. As for
W, it can be easily shown by simulation that |y| is either O, 1,
or 2 over 99.7% of the time. Hence, we can simply use a set
of comparators to determine the value of 4 instead of using a
division. For those || greater than 2 are saturated to 2, which
rarely happened. The BER performance of the fixed-point sys-
tolic implementation for an 4 x 4 MIMO system is shown in
Fig. 10, where 16-QAM modulation and ZF-SIC detection are
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Table 3. FPGA implementation results.

Target ASLR FSR-LLL CLLL[14]
algorithm
Device | Virtex 5'| Virtex 6%} Virtex 5' | Virtex 6° | Virtex 4| Virtex 5
Slices 2322 | 1812 | 2335 1798 | 3617 | 1712
e8| noago | /20000 | 720480 1 /20000 | /67584 | 717280
Clock 1\ ¢ vz | 240 MEZ| 155 Mrtz | 247 MEtz [140 Mtz | 163 Mt
frequency
Ave. 30 (SQRD) 34 (SQRD) 130 (SORD
cycles(time)| 500.0 ns] 321.3 ns] 5419 ns | 340.1ns 30 (SQRD)
per channel 146 (QRD) 164 (QRD)
! 6 ns| 797.5 ns
matrix [ 5725 ns] 586.3 ns| 1058.1ns] 664.0ms| 0 ™| 7738

'"Part number: XC5VFX130T  ?Part number: XC6VLX130T

applied. The implementation results are shown in Table 3. We
consider both QRD and SQRD as the pre-processes of the lat-
tice reduction algorithms. From the results, ASLR is superior
to FSR-LLL in terms of the average processing time, and this
advantage is significant when QRD is applied. The hardware
complexity for ASLR and FSR-LLL are about the same, since
they only differ from each other in the external controllers. It
is also clear that SQRD reduces the average processing time by
over 45% comparing to using the normal QRD, at the cost of
higher computation efforts on SQRD.

In Table 3, the FPGA implementation result for the conven-
tional complex LLL (CLLL) [14] is also listed for comparison.
Under Virtex 5 and with SQRD, systolic ASLR operates at a
slightly lower speed than the one of CLLL,; however our designs
require only 61.5% average clock cycles of theirs. As a result,
ASLR is on average faster than CLLL by a factor of 1.6. This
verifies the high-throughput advantage of the systolic arrays. On
the other hand, systolic arrays implementation may have higher
hardware complexity since it requires several processing ele-
ments to work in parallel. The results in Table 3 shows that our
designs occupied 36-38% more FPGA slices than the one in
CLLL. However, as the fast the advance of FPGA technology
and the semiconductor processing, one may consider to trade
some areas for a faster processing speed. As shown in Table 3,
when using the latest Xilinx Virtex 6 FPGA device, our systolic
designs could run up to 249 MHz and it only requires less than
10% of the total FPGA slices.

V. SYSTOLIC ARRAY FOR DETECTION METHODS
A. Linear Detection in Systolic Array

After lattice reduction, the matrices QH and f{, along with
the unimodular matrix T, are stored in the systolic array. As
shown in Fig. 2, the first step of a linear detection consists of
premultiplying the received signal vector y by HT, which yields
% = H'y = R~1Q"y. Second, the result of a matrix—vector
multiplication needs to be rounded element-wise. The final step
is to multiply the rounded results by the unimodular matrix T
and constrain all results within the constellation boundary. If X,
denotes the element-wise-rounded X, the final decision of the
LRAD is %1 p = Q(T - &4}, as described in subsection II-C.

In the following discussion, we assume an 4 x 4 MIMO sys-
tem, and consider the ZF detection first. The first and last steps
of a linear detection can be implemented by the same systolic
array of Fig. 4 without using extra cells, As for the rounding
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Fig. 11. The linear detection operations in the systolic array: (a) v =
Qfy, (b)x =R v, and (c) krr = Q(T - &,).

and the final constellation boundary check, they should be done
outside the systolic array (they are not shown in Fig. 11). To
execute X = R1Qy in the systolic array, we separate it
into two matrlx—vector multiplications v = Q¥ y and then
% = R~v. Since QH stays in the systohc arrays after the
lattice reduction ends, the received signal vector y can be fed to
the systolic arrays from the top in a skewed manner as shown
in Fig. 11(a). The vector Q”y is pumped out from the right-
most column of the array. Diagonal and off-diagonal cells are
needed at this stage, and the operations of the cells are shown
in Fig. 12(a). Every cell performs the multiply-and-add opera-
tion. If MMSE is chosen, the input vector should be changed to
an 2m x 1 vector y according to the extended model (5). Let

y =¥t yrﬂ “and QF = [Q; Q2), where y1, y» are m x 1
vectors and QQ;, Q9 are m X m matrices. As mentioned in sub-
section IV-B, the elements of Q; and Q5 are stored in the same
PEs. To compute v = Q¥ y using the systolic array, first we
let y; enter the array from the top and multiply it by Qy, which
is the same as shown in Fig. 11(a). Then, yo enters the array
right after y;, also in a skewed manner, and is multiplied by
Q.. Hence, for MMSE we need an extra operation at the output
of the array, which is v = Quy; + Qay2. For the remaining
operations in the systolic array, there is no difference between
ZF and MMSE detections.

The second stage consists of computing X = R-'v. In-
stead of computing R ! directly, the following recursive equa-
tion [38] is considered for the systolic design

1 e B .
£y = . - Z Ti:2; |, 7 starts fromm to 1. (14)
¥ izt

According to (14), it is clear that R~'v can be computed di-
rectly from the components of R without computing R™L Ad-
ditionally, it can be implemented by the upper triangle part of
the systolic array, where matrix R has already been stored. As
shown in Fig. 11(b), the vector v = QH y enters the array from
the right, and * = R~1v is computed by the triangular array
with cell operations shown in Fig. 12(b). The output vector X is
then rounded element-wise outside the systolic array. The final
step consists of multiplying the quantized vector X, by the uni-
modular matrix T, which is also stored in the array. Similar to
the first step of a linear detection, it is a matrix—vector multipli-
cation between T and %,. Hence, the data flow in Fig. 11(c) is
the same as Fig. 11(a). The cell operations for T - X, are shown
in Fig. 12(a), and the array output being quantized to the closest
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Fig. 12. The detailed operations of the diagonal cells and off-diagonal
cells in the systolic array at different stage: (a) Qfy and T - %4 and
(b) R-1v.
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Fig. 13. The data flow and the detailed operations of the cells in the
systolic array for the interference-cancellation step of LR-aided SIC.

constellation point is the final result &y,r of the linear LRAD.

B. Spatial-Interference Cancellation in Systolic Array

The SIC can also be performed on this systolic array with
some modifications to the PEs. Observing the first step of LR-
aided SIC showing in (7), it should be apparent that Q”y can
be performed in the systolic array in the same fashion as in
Fig. 11(a) and Fig. 12(a). The second step (8) of LR-aided SIC
can be done in the systolic array as shown in Fig 13. It is al-
most the same operations as the one Fig. 12(b), except that we
have to do a rounding in the off-diagonal cells Oy; at the super-
diagonal position (§ = ¢ + 1). The rounding operations are for
the decision of each ;. Similar to the linear LRAD, the final
step of LR-aided SIC is to multiply z by the unimodular matrix
T and bound all the output within the QAM constellation. It can
be done in the same way as in Fig 11(c) and Fig. 12{(a), with %X,
being replaced by Z.

Notice that lattice reduction and linear detection (or SIC) are
performed in the same systolic array, and it can be hardware- ef-
ficient to share the adder/multiplier/divider designed for lattice
reduction processing. For instance, there is one addition, one
multiplication, and one division in each diagonal cell, and one
addition and one multiplication in each off-diagonal cell for lin-
ear detection or SIC, be it ZF or MMSE. These operations are
also contained in each cell at the LLL lattice reduction stage. For
SIC, it seems that we need extra rounding operations in those
off-diagonal cells at the superdiagonal position. Now, we need
those rounding operations in the off-diagonal cells during the
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full size reduction processing as well. Hence, there need be no
extra hardware cost (adders or multipliers) in each cell for lin-
ear detection. Only extra control logic to the array is needed in
order to have each PE work correctly in different modes.

VI. CONCLUSION

In this paper, we have described a systolic array perform-
ing LLL-based lattice-reduction-aided detection for MIMO re-
ceivers. Lattice reduction and the ensuing linear detection or
successive spatial-interference cancellation can be executed by
the same array, with minimum global access to each processing
element. The proposed systolic array with external logic con-
troller can work with two different lattice-reduction algorithms.
One is LLL algorithm with full size reduction, which is a differ-
ent form of the conventional LLL algorithm and more suitable
for parallel processing. The second one is an all-swap complex
lattice-reduction algorithm, which generalizes the one originally
proposed in [30] for real lattices. Compared to FSR-LLL, ASLR
operates on a whole matrix, rather than on its single columns,
during the column-swap and Givens-rotation steps. To reduce
the complexity of data communications between processing el-
ements in the systolic array, we replace Lovasz condition in the
LLL algorithm by Siegel condition. Even though Siegel con-
dition is weaker than Lovész condition, the BER performance
of LR-aided linear detections based on our two algorithm ver-
sions appears to be as good as using the conventional LLL, and
the computational complexity is reduced by the relaxation as
well. Based on BER performance and time-efficiency compar-
isons, ASLR should be preferred to FSR-LLL, especially for
an MIMO system with a large number of antennas. The FPGA
implementation results also show that our proposed systolic ar-
chitecture for lattice reduction algorithms run about 1.6 x faster
than the conventional LLL, at the cost of moderate increases of
hardware complexity. Additionally, due to the high- throughput
property of systolic arrays, our design appears very promising
for high-data-rate systems, such as in a MIMO-OFDM system.
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