• Title/Summary/Keyword: Latin squares

Search Result 31, Processing Time 0.018 seconds

CROSS-INTERCALATES AND GEOMETRY OF SHORT EXTREME POINTS IN THE LATIN POLYTOPE OF DEGREE 3

  • Bokhee Im;Jonathan D. H. Smith
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.91-113
    • /
    • 2023
  • The polytope of tristochastic tensors of degree three, the Latin polytope, has two kinds of extreme points. Those that are at a maximum distance from the barycenter of the polytope correspond to Latin squares. The remaining extreme points are said to be short. The aim of the paper is to determine the geometry of these short extreme points, as they relate to the Latin squares. The paper adapts the Latin square notion of an intercalate to yield the new concept of a cross-intercalate between two Latin squares. Cross-intercalates of pairs of orthogonal Latin squares of degree three are used to produce the short extreme points of the degree three Latin polytope. The pairs of orthogonal Latin squares fall into two classes, described as parallel and reversed, each forming an orbit under the isotopy group. In the inverse direction, we show that each short extreme point of the Latin polytope determines four pairs of orthogonal Latin squares, two parallel and two reversed.

PACKING LATIN SQUARES BY BCL ALGEBRAS

  • LIU, YONGHONG
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.133-139
    • /
    • 2022
  • We offered a new method for constructing Latin squares. We introduce the concept of a standard form via example for Latin squares of order n and we also call it symmetric BCL algebras matrix, and thereby become BCL algebra representations of the picture of Latin squares. Our research shows that some new properties of the Latin squares with BCL algebras are in ℤn.

Orthogonal Latin squares of Choi Seok-Jeong (최석정의 직교라틴방진)

  • Kim, Sung-Sook;Khang, Mee-Kyung
    • Journal for History of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.21-31
    • /
    • 2010
  • A latin square of order n is an $n{\times}n$ array with entries from a set of n numbers arrange in such a way that each number occurs exactly once in each row and exactly once in each column. Two latin squares of the same order are orthogonal latin square if the two latin squares are superimposed, then the $n^2$ cells contain each pair consisting of a number from the first square and a number from the second. In Europe, Orthogonal Latin squares are the mathematical concepts attributed to Euler. However, an Euler square of order nine was already in existence prior to Euler in Korea. It appeared in the monograph Koo-Soo-Ryak written by Choi Seok-Jeong(1646-1715). He construct a magic square by using two orthogonal latin squares for the first time in the world. In this paper, we explain Choi' s orthogonal latin squares and the history of the Orthogonal Latin squares.

HOMOGENEOUS CONDITIONS FOR STOCHASTIC TENSORS

  • Im, Bokhee;Smith, Jonathan D.H.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.371-384
    • /
    • 2022
  • Fix an integer n ≥ 1. Then the simplex Πn, Birkhoff polytope Ωn, and Latin square polytope Λn each yield projective geometries obtained by identifying antipodal points on a sphere bounding a ball centered at the barycenter of the polytope. We investigate conditions for homogeneous coordinates of points in the projective geometries to locate exact vertices of the respective polytopes, namely crisp distributions, permutation matrices, and quasigroups or Latin squares respectively. In the latter case, the homogeneous conditions form a crucial part of a recent projective-geometrical approach to the study of orthogonality of Latin squares. Coordinates based on the barycenter of Ωn are also suited to the analysis of generalized doubly stochastic matrices, observing that orthogonal matrices of this type form a subgroup of the orthogonal group.

GENERALIZED LATIN SQUARE

  • Iranmanesh A.;Ashrafi A.R.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.285-293
    • /
    • 2006
  • Let X be a n-set and let A = [aij] be a $n {\times} n$ matrix for which $aij {\subseteq} X$, for $1 {\le} i,\;j {\le} n$. A is called a generalized Latin square on X, if the following conditions is satisfied: $U^n_{i=1}\;aij = X = U^n_{j=1}\;aij$. In this paper, we prove that every generalized Latin square has an orthogonal mate and introduce a Hv-structure on a set of generalized Latin squares. Finally, we prove that every generalized Latin square of order n, has a transversal set.

A Syndrome-distribution decoding MOLS L$_{p}$ codes

  • Hahn, S.;Kim, D.G.;Kim, Y.S.
    • Communications of Mathematical Education
    • /
    • v.6
    • /
    • pp.371-381
    • /
    • 1997
  • Let p be an odd prime number. We introduce simple and useful decoding algorithm for orthogonal Latin square codes of order p. Let H be the parity check matrix of orthogonal Latin square code. For any x ${\in}$ GF(p)$^{n}$, we call xH$^{T}$ the syndrome of x. This method is based on the syndrome decoding for linear codes. In L$_{p}$, we need to find the first and the second coordinates of codeword in order to correct the errored received vector.

  • PDF

Long-term Bias of Internal Markers in Sheep and Goat Digestion Trials

  • De Carvalho, Gleidson Giordano Pinto;Garcia, Rasmo;Vieira Pires, Aureliano Jose;Silva, Roberio Rodrigues;Detmann, Edenio;Oliveira, Ronaldo Lopes;Ribeiro, Leandro Sampaio Oliveira
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.1
    • /
    • pp.65-71
    • /
    • 2013
  • Two digestion trials, one with sheep and another with goats, were conducted to evaluate the long-term bias (LTB) of the indigestible dry matter (iDM), indigestible neutral detergent fiber (iNDF) and indigestible acid detergent fiber (iADF) internal markers. The study used eight Santa In$\hat{e}$s castrated male sheep (average body weight of 16.6 kg) distributed in two $4{\times}4$ Latin squares and eight Saanen castrated male goats (average body weight of 22.6 kg) distributed in two $4{\times}4$ Latin squares. The experiments were conducted simultaneously, and the animals were housed in 1.2 $m^2$ individual pens with wood-battened floors equipped with individual feeders and drinkers. The animals received isonitrogenous diets that were offered ad libitum and contained 14% crude protein and 70% sugar cane (with 0, 0.75, 1.5 or 2.25% CaO, in natural matter percentage), corrected with 1% urea and 30% concentrate. The experiment consisted of four experimental periods of 14 d each, with the feed, leftovers and feces sampled on the last four days of each period. The marker concentrations in the feed, leftovers and fecal samples were estimated by an in situ ruminal incubation procedure with a duration 240 h. The relationship between the intake and excretion of the markers was obtained by adjusting a simple linear regression model, independently from the treatment (diets) fixed effects and Latin squares. For both the sheep and goats, a complete recovery of the iDM and iNDF markers was observed (p>0.05), indicating the absence of LTB for these markers. However, the iADF was not completely recovered, exhibiting an LTB of -9.12% (p<0.05) in the sheep evaluation and -3.02% (p<0.05) in the goat evaluation.

CONSTRUCTIONS OF REGULAR SPARSE ANTI-MAGIC SQUARES

  • Chen, Guangzhou;Li, Wen;Xin, Bangying;Zhong, Ming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.617-642
    • /
    • 2022
  • For positive integers n and d with d < n, an n × n array A based on 𝒳 = {0, 1, …, nd} is called a sparse anti-magic square of order n with density d, denoted by SAMS(n, d), if each non-zero element of X occurs exactly once in A, and its row-sums, column-sums and two main diagonal-sums constitute a set of 2n + 2 consecutive integers. An SAMS(n, d) is called regular if there are exactly d non-zero elements in each row, each column and each main diagonal. In this paper, we investigate the existence of regular sparse anti-magic squares of order n ≡ 1, 5 (mod 6), and prove that there exists a regular SAMS(n, d) for any n ≥ 5, n ≡ 1, 5 (mod 6) and d with 2 ≤ d ≤ n - 1.

ON SOME MDS-CODES OVER ARBITRARY ALPHABET

  • Chang, Gyu Whan;Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.9 no.2
    • /
    • pp.129-131
    • /
    • 2001
  • Let $q=p^{e1}_1{\cdots}p^{em}_m$ be the product of distinct prime elements. In this short paper, we show that the largest value of M such that there exists an ($n$, M, $n-1$) $q$-ary code is $q^2$ if $n-1{\leq}p^{ei}_i$ for all $i$.

  • PDF

CLASSIFICATION OF QUASIGROUPS BY RANDOM WALK ON TORUS

  • MARKOVSKI SMILE;GLIGOROSKI DANILO;MARKOVSKI JASEN
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.57-75
    • /
    • 2005
  • Quasigroups are algebraic structures closely related to Latin squares which have many different applications. There are several classifications of quasigroups based on their algebraic properties. In this paper we propose another classification based on the properties of strings obtained by specific quasigroup transformations. More precisely, in our research we identified some quasigroup transformations which can be applied to arbitrary strings to produce pseudo random sequences. We performed tests for randomness of the obtained pseudo-random sequences by random walks on torus. The randomness tests provided an empirical classification of quasigroups.