• Title/Summary/Keyword: Lateral vibration

Search Result 491, Processing Time 0.028 seconds

A Study on the Effects of a High-Speed Railway Bridge Vibration induced by Moving Train on the Adjacent Bridge (열차주행에 의한 고속철도 교량의 진동이 인접 교량에 미치는 영향에 관한 연구)

  • Kim Sung-Il;Lee Jang-Seok
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.900-905
    • /
    • 2004
  • A study on the effects of a high-speed railway bridge vibration induced by moving train on the nearby bridge is performed. Longitudinal and lateral accelerations of slabs and piers which are calculated from moving load analysis of a high-speed railway bridge can be used as input ground motions for the adjacent bridge. Dynamic responses of the adjacent bridge considering soil-structure interaction effects are analyzed by sub-structure method. Analysis procedure is made of free field analysis, calculation of impedance and effective input load and soil-structure system analysis.

  • PDF

Analysis on the Snake Motion of One Freight Car for High Speed Running (고속주행을 위한 화차 한량의 사행동 해석)

  • 이승일;최연선
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.149-155
    • /
    • 2003
  • The development of railway vehicles involves the proper selection of design parameters not only to achieve high speed but also to reduce the vibration of the train. In this study an analytical model of a freight car is developed to find the critical speed. The freight car can generate the snake motion of the lateral and yawing motion of the car body, the bogie, and the wheelset. Numerical analysis for the nonlinear equation motions with 17 degrees of freedom showed the running stability and critical speed due to the snake motion. Also, the vibration modes of the freight car was calculated using ADAMS/RAIL, which showed that the critical speed have the yawing modes of the car body and the bogie. Finally this paper shows that the snake motion of the vehicle can be controlled with the modifications of the design parameters.

Analysis of the Snake motion of One High Speed Freight Car (고속화차 한량의 사행동 해석)

  • 이승일;최연선
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.193-201
    • /
    • 2002
  • The development of railway vehicle and bogie involves the proper selection of design parameters not only to achieve high speed but also to reduce the vibration of the train. In this study an analytical model of a high speed freight car is developed to find the critical speed. The high speed freight car can generate the snake motion of the lateral and yawing motion of the car body, the bogie, and the wheelset. Numerical analysis for the nonlinear equation motions with 17 degrees of freedom showed the running stability and critical speed due to the snake motion. Also, the vibration modes of tile high speed freight car was calculated using ADAMS RAIL, which showed that the critical speed have the yawing modes of the car body and the bogie. Finally, this paper shows that the snake motion of the vehicle can be controlled with the modifications of the design parameters.

  • PDF

Rotordynamic Analysis for Labyrinth Seals Used in Compressors (압축기용 라비린스 실의 동특성 해석)

  • 하태웅;이안성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.138-144
    • /
    • 1997
  • The analysis of lateral hydrodynamic forces from the compressor labyrinth seals is presented. The basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculation of the wall shear stresses and the recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the labyrinth seal. The rotordynamic analysis for the balance drum labyrinth seal of an ethylene refrigeration compressor is carried out. The results of rotordynamic characteristic of the labyrinth seal and comparisons with other types of seal, honeycomb seal and smooth seal, are presented.

  • PDF

Evaluation of Seismic Responses of Isolated Bridges Considering the Flexibility of Piers (교각의 강성을 고려한 지진격리교량의 응답특성 평가)

  • Seo, Hyun-Woo;Kim, Nam-Sik;Cheung, Jin-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.662-665
    • /
    • 2004
  • In this paper, based on shaking table test results on a seismically isolated bridge model, an inelastic numerical model is refined by using Bouc-Wen model representing the hysteretic behavior of isolators. Seismic responses of isolated bridges are numerically investigated varying with relative stiffness ratios, which is a ratio of the effective stiffness of isolator to the lateral stiffness of bridge pier. From the results, it is found that an adequate range of relative stiffness ratio could be defined for seismic design of isolated bridges without considering the flexibility of piers.

  • PDF

A Study of the Development of Air Spring Mount with High Damping Characteristic (감쇠기능을 갖는 에어마운트 개발에 관한 연구)

  • Uhm, Young-Hwan;Maeng, Ju-Won;Kwon, Tae-Chul;Lee, Seong-Choon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.188-192
    • /
    • 2004
  • The purpose of this study is to develop an air spring mount that has high damping characteristic. The new type air spring mount has a polyurethane core in the center. By adding the core, the air spring mount shows excellent damping effect and good resistance to lateral force. This study includes both the analytical study and the experimental study of the new type air spring mount.

  • PDF

Analysis on the Suporting Integrity of the PWR Fuel Rod (경수로 핵연료봉 노내지지 건전성 해석)

  • 임정식;구양현;윤경호;손동성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.177-183
    • /
    • 1997
  • The fuel rod for PWR is supported by the spring of the sapcer grid to maintain its axial location and lateral space between fuel rods to get proper functions during the residence in the reactor. The long exposure duration makes the spring to be relax and loss the spring force that results in a fuel rod rattling which may cause fuel rod failure. Here considering the spring behaviour as a function of burnup the reaction forces of the springs are calculated by the finite element program developed herein to evaluate the integrity of the fuel rod from fretting. The results are compared with previous data and ANSYS for the validation of the program and procedures.

  • PDF

On soil-structure interaction models to simulate free vibrations and behavior under seismic loads of a RC building supported by a particular shallow foundation

  • Soelarso Soelarso;Jean-Louis Batoz;Eduard Antaluca;Fabien Lamarque
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.461-479
    • /
    • 2023
  • The paper deals with the finite element modelling of the free vibration and structural behavior of a particular four-floor reinforced concrete structure subjected to static equivalent seismic loads and supported by a shallow foundation system called SNSF (Spider Net System Footing). The two FE models are a simple 2D Matlab model and a detailed 3D model based on solid elastic elements using Altairworks (Hypermesh and Optistruct). Both models can simulate the soil structure interaction. We concentrate on the behavior of a representative cell involving two columns on five levels. The influence of the boundary conditions on the external vertical planes of the domain are duly studied. The Matlab model appears relevant for a primary estimation of frequencies and stiffness of the whole structure under vertical and lateral loads.