• Title/Summary/Keyword: Latent dirichlet allocation

Search Result 217, Processing Time 0.023 seconds

A Text Mining Analysis of Attributes for Satisfaction and Effect of Consumer Ratings to Korea and China Duty Free Stores - Focusing on Chinese Tourists - (텍스트 마이닝을 통한 한국과 중국 시내면세점 만족 속성과 소비자 평점에 미치는 영향 분석 -중국인 관광객을 중심으로)

  • Yang, DaSom;Kim, Jong Uk
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.1-9
    • /
    • 2020
  • This study aims to find new attributes by analyzing Korea and China duty free store online reviews and examine the influence of these attributes on star ratings(satisfaction)of duty free store. For study, we used Dazhong Dianping that largest online review site in China. Using R, we analyzed 5,659 reviews of Korea duty free store and 4,051 reviews of China duty free store. According to the analysis, Sale, Food and Membership attributes had a positive effect on star rating of Korea duty free store. Sale, Product, Airport, Food and Membership had a positive effect on star rating of China duty free store. This study has identified new factors such as food that showed the importance of providing space of restaurants while shopping at duty free store. This study has contributed to the existing literature by finding new attribute such as food. Practically, this finding will help to duty free industry workers better understand the impact of providing space of restaurants on duty free store.

A Study on the Research Trends on Domestic Platform Government using Topic Modeling (토픽 모델링을 활용한 한국의 플랫폼정부 연구동향 분석)

  • Suh, Byung-Jo;Shin, Sun-Young
    • Informatization Policy
    • /
    • v.24 no.3
    • /
    • pp.3-26
    • /
    • 2017
  • The amount of unstructured data generated online is increasing exponentially and the analysis of text data is being done in various fields. In order to identify the research trends on the platform government, the title, year, academic society, and abstract information of the academic papers on the subject of platform government were collected from the database of the domestic papers, DBPIA(www.dbpia.co.kr). The results of the existing research on the platform government and related fields were analyzed based on each stage of the national informatization promotion. The technology, service, and governance topics were extracted from papers on platform government and the trends of core topics were analyzed by year. Entering the era of the intelligent information society, this study has significance for providing the basis for defining a new role of government - the platform government that sets the stage for the private sector to lead the innovation, and plays the role of an 'enabler' and 'facilitator' instead. The purpose of this study is to understand the platform government research through objective analysis of its trends. Looking for future directions, this study will contribute to future research by providing reference materials.

A Topic Analysis of College Education Using Big Data of News Articles (뉴스 빅데이터를 통해 검토한 대학교육의 토픽 분석)

  • Yang, Ji-Yeon;Koo, Jeong-Ho
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.11-20
    • /
    • 2021
  • This study extracts topics related to university education through newspaper articles and analyzes the characteristics of each topic and the reporting patterns of each newspaper. The 9 topics were discovered using LDA. Topic 1 and Topic 3 are related to university support projects for education, but Topic 3 is focused on local universities. Topic 2 is about university education after COVID-19, Topic 4 teaching-learning methods, Topic 5 government policies, Topic 6 the high school education contribution university support projects, Topic 7 the university education vision, Topic 8 internationalization, and Topic 9 the entrance exam. The Chosun Ilbo, Kyunghyang, and Hankyoreh reported a lot of articles associated to lectures after COVID-19, government policies, and comments on university education. Relevant articles since 2016 have been analyzed by newspaper type and before/after COVID-19 through which differences in the topics were studied and discussed. These findings would suggest a basic policy guideline for university education and imply that the positive and negative effects of the media need to be considered.

A Study on Analysis of national R&D research trends for Artificial Intelligence using LDA topic modeling (LDA 토픽모델링을 활용한 인공지능 관련 국가R&D 연구동향 분석)

  • Yang, MyungSeok;Lee, SungHee;Park, KeunHee;Choi, KwangNam;Kim, TaeHyun
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.47-55
    • /
    • 2021
  • Analysis of research trends in specific subject areas is performed by examining related topics and subject changes by using topic modeling techniques through keyword extraction for most of the literature information (paper, patents, etc.). Unlike existing research methods, this paper extracts topics related to the research topic using the LDA topic modeling technique for the project information of national R&D projects provided by the National Science and Technology Knowledge Information Service (NTIS) in the field of artificial intelligence. By analyzing these topics, this study aims to analyze research topics and investment directions for national R&D projects. NTIS provides a vast amount of national R&D information, from information on tasks carried out through national R&D projects to research results (thesis, patents, etc.) generated through research. In this paper, the search results were confirmed by performing artificial intelligence keywords and related classification searches in NTIS integrated search, and basic data was constructed by downloading the latest three-year project information. Using the LDA topic modeling library provided by Python, related topics and keywords were extracted and analyzed for basic data (research goals, research content, expected effects, keywords, etc.) to derive insights on the direction of research investment.

A Study on the Research Trends for Smart City using Topic Modeling (토픽 모델링을 활용한 스마트시티 연구동향 분석)

  • Park, Keon Chul;Lee, Chi Hyung
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.119-128
    • /
    • 2019
  • This study aims to analyze the research trends on Smart City and to present implications to policy maker, industry professional, and researcher. Cities around globe have undergone the rapid progress in urbanization and the consequent dramatic increase in urban dwellings over the past few decades, and faced many urban problems in such areas as transportation, environment and housing. Cities around the globe are in a hurry to introduce Smart City to pursue a common goal of solving these urban problems and improving the quality of their lives. However, various conceptual approaches to smart city are causing uncertainty in setting policy goals and establishing direction for implementation. The study collected 11,527 papers titled "Smart City(cities)" from the Scopus DB and Springer DB, and then analyze research status, topic, trends based on abstracts and publication date(year) information using the LDA based Topic Modeling approaches. Research topics are classified into three categories(Services, Technologies, and User Perspective) and eight regarding topics. Out of eight topics, citizen-driven innovation is the most frequently referred. Additional topic network analysis reveals that data and privacy/security are the most prevailing topics affecting others. This study is expected to helps understand the trends of Smart City researches and predict the future researches.

Topic change monitoring study based on Blue House national petition using a control chart (관리도를 활용한 국민청원 토픽 모니터링 연구)

  • Lee, Heeyeon;Choi, Jieun;Lee, Sungim;Son, Won
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.795-806
    • /
    • 2021
  • Recently, as text data through online channels have become vast, there is a growing interest in research that summarizes and analyzes them. One of the fundamental analyses of text data is to extract potential topics. Although the researcher may read all the data and summarize the contents one by one, it is not easy to deal with large amounts of data. Blei and Lafferty (2007) and Blei et al. (2003) proposed topic modeling methods for extracting topics using a statistical model. Since the text data is generally collected over time, it is worthwhile to monitor the topic's changes. In this study, we propose a topic index based on the results of the topic model. In addition, a control chart, a representative tool for statistical process management, is applied to monitor the topic index over time. As a practical example, we use text data collected from Blue House National Petition boards between March 5, 2018, and March 5, 2020.

Analysis on Research Trends in Sport Facilities: Focusing on SCOPUS DB (스포츠시설에 관한 연구 동향 분석: SCOPUS DB를 중심으로)

  • Kim, Il-Gwang;Park, Seong-Taek;Park, Su-Sun;Kim, Mi-Suk;Park, Jong-Chul;Jiang, Jialei
    • Journal of Industrial Convergence
    • /
    • v.19 no.6
    • /
    • pp.11-19
    • /
    • 2021
  • The purpose of this study is to explore trends in research at home and abroad related to "Sport Facilities", and seek the direction of further research. 1,801 abstracts of papers including "Sport Facilities" were collected from the SCOPUS DB from 2016 to 2020. Topic modeling techniques based on Latent Dirichlet Allocation (LDA) algorithm implemented in R language, TD-IDF techniques, and word cluds using Tagxedo was conducted to analyze the data. As a result, 8 topics were optimally determined, and "sports", "facilities", "health", "physical", "data", and "using" were derived as the main keywords for topics. This results indicated that studies on physical activity, health and using facilities regarding sports facilities at home and abroad have been actively carried out in recent years. This indicates that papers in SCOPUS DB are paying attention to the instrumental value of sport facilities, such as health promotion and improving the quality of life. Therefore, various studies that help participants who use sport facilities for a healthy life should be continuously conducted in the future.

The Research Features Analysis of Leisure and Recreation based on Co-authors Network and Topic Model (공저자 네트워크 및 토픽 모델링 기반 여가레크리에이션 학술 연구 특징 분석)

  • Park, SungGeon;Park, Kwang-Won;Kang, Hyun-Wook
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.2
    • /
    • pp.279-289
    • /
    • 2018
  • The purpose of this study is to investigate features of leisure and recreation scholarship study in The Korean Journal of physical education based on co-authors network and topic modeling through using Word Cloud and LDA Topic Modeling(Latent Dirichlet Allocation). The data collected for this study are 2,697 papers published online from January 2008 to March 2017 on the Korean journal of physical education. Respectively ordered analysis targets are the major author, author of correspondence, co-author 1, co-author 2, co-author n in related document to explore studies' trends using the 369 documents. As a result, the co-author network analysis result found that 451 were linked to the research network, on average researchers had 1.52 relationships and the average distance between researchers was 2.33. The Representative author's concentration of connection was ranked high in the order of the following, Lee. K. M., Hwang. S. H., H., Lee. C. S., and proximity centers were shown in Seo K. B., Han. J. H., Kim. K. J. Finally, parameter-centric features appeared in order of Lee. C. W. and Seo. K. B. was most actively connected between the researchers of the leisure-related academic papers. Future research needs discussions among scholars regarding the trend and direction of future leisure research.

An Exploratory Study of Generative AI Service Quality using LDA Topic Modeling and Comparison with Existing Dimensions (LDA토픽 모델링을 활용한 생성형 AI 챗봇의 탐색적 연구 : 기존 AI 챗봇 서비스 품질 요인과의 비교)

  • YaeEun Ahn;Jungsuk Oh
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.191-205
    • /
    • 2023
  • Artificial Intelligence (AI), especially in the domain of text-generative services, has witnessed a significant surge, with forecasts indicating the AI-as-a-Service (AIaaS) market reaching a valuation of $55.0 Billion by 2028. This research set out to explore the quality dimensions characterizing synthetic text media software, with a focus on four key players in the industry: ChatGPT, Writesonic, Jasper, and Anyword. Drawing from a comprehensive dataset of over 4,000 reviews sourced from a software evaluation platform, the study employed the Latent Dirichlet Allocation (LDA) topic modeling technique using the Gensim library. This process resulted the data into 11 distinct topics. Subsequent analysis involved comparing these topics against established AI service quality dimensions, specifically AICSQ and AISAQUAL. Notably, the reviews predominantly emphasized dimensions like availability and efficiency, while others, such as anthropomorphism, which have been underscored in prior literature, were absent. This observation is attributed to the inherent nature of the reviews of AI services examined, which lean more towards semantic understanding rather than direct user interaction. The study acknowledges inherent limitations, mainly potential biases stemming from the singular review source and the specific nature of the reviewer demographic. Possible future research includes gauging the real-world implications of these quality dimensions on user satisfaction and to discuss deeper into how individual dimensions might impact overall ratings.

Problem Identification and Improvement Measures through Government24 App User Review Analysis: Insights through Topic Model (정부24 앱 사용자 리뷰 분석을 통한 문제 파악 및 개선방안: 토픽 모델을 통한 통찰)

  • MuMoungCho Han;Mijin Noh;YangSok Kim
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.27-35
    • /
    • 2023
  • Fourth Industrial Revolution and COVID-19 pandemic have boosted the use of Government 24 app for public service complaints in the era of non-face-to-face interactions. there has been a growing influx of complaints and improvement demands from users of public apps. Furthermore, systematic management of public apps is deemed necessary. The aim of this study is to analyze the grievances of Government 24 app users, understand the current dissatisfaction among citizens, and propose potential improvements. Data were collected from the Google Play Store from May 2, 2013, to June 30, 2023, comprising a total of 6,344 records. Among these, 1,199 records with a rating of 1 and at least one 'thumbs-up' were used for topic modeling analysis. The analysis revealed seven topics: 'Issues with certificate issuance,' 'Website functionality and UI problems,' 'User ID-related issues,' 'Update problems,' 'Government employee app management issues,' 'Budget wastage concerns ((It's not worth even a single star) or (It's a waste of taxpayers' money)),' and 'Password-related problems.' Furthermore, the overall trend of these topics showed an increase until 2021, a slight decrease in 2022, but a resurgence in 2023, underscoring the urgency of updates and management. We hope that the results of this study will contribute to the development and management of public apps that satisfy citizens in the future.