• 제목/요약/키워드: Laser micro-machining

검색결과 132건 처리시간 0.028초

초정밀 가공기를 활용한 광학계 부품 가공기술 (Ultra Precision Machining Technique for Optical System Parts)

  • 양순철;김상혁;허명상;장기수;박순섭;원종호;김건희
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.13-19
    • /
    • 2012
  • Ultra Precision Machining Techniques, such as manufacturing Micro Lens Array(MLA), off-axis mirror, $F-{\theta}$ lens for laser printer, are achieved, based on technologies in consequence of development of modern high-precision machining mechanism. Above all, FTS(Fast Tool Servo) and STS(Slow Tool Servo) are more innovative technologies for reducing time and development costs. In this paper, it is described that MLA machining technique by FTS, off-axis mirror machining technique by STS, optics for observing space, and development of infrared aspheric lens for a thermal imaging microscope.

3차원 측정 데이터의 B-스플라인 곡면식 적영에 대한 연구 (A Study on the Generation of B-Spline Surface by 3D Measurement Data)

  • 구영희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.76-81
    • /
    • 1998
  • The purpose of this study is the generation of B-spline surface by the 3D measurement data. The hardware of the system comprises PC and digitizing machine, machining center. There are three steps, (1) physical model measuring on the 3D laser digitizing machine, (2) B-spline surface modeling and Fairing, (3) CNC machining by the NC code. It is developed a software package, with which can conduct a micro CAM system in the PC without economical burden.

  • PDF

변형률 속도 효과를 고려한 355nm UV 레이저 다중 펄스 미세가공의 전산해석에 관한 연구 (A Study on the Computational Analysis of 355nm UV Laser Multiple-Pulsed Micro Machining Considering the Strain Rate Effect)

  • 이정한;오재용;박상후;남기중;류광현;신석훈;신보성
    • 한국정밀공학회지
    • /
    • 제27권10호
    • /
    • pp.29-33
    • /
    • 2010
  • UV laser micromachining of metallic materials has been used in microelectronic and other industries. This paper shows on experimental investigation of micromachining of copper using a 355nm UV laser with 50ns pulse duration. A finite element model with high strain rate effect is especially suggested to investigate the phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. In order to consider the strain rate effect, Cowper-Symonds model was used. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, a commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computational simulation of the UV laser micro machining behavior for thin copper material. From these computational results, depth of the dent (from one to six pulsed) were observed and compared with previous experimental results. This will help us to understand interaction between UV laser beam and material.

피코초 레이저를 이용한 니켈의 미세가공 특성 (Micro-machining of nickel by picosecond laser ablation)

  • 신동식;이제훈;서정;노지환;정용운;김재구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.653-654
    • /
    • 2006
  • In case of ultrashort laser ablation of metals, the transfer of energy from the electronic system causing strong absorption of laser light to the lattice needs relaxation times of the order of some picoseconds. Under the above theoretical background, nickel was ablated using femtosecond, picosecond and nanosecond laser. As a result, nickel ablation by picosecond laser and femtosecond laser, which are called ultrashort laser, has similar machinability because of relaxation time of metals, whereas nanosecond Nd:YAG laser has lower absorption, higher thermalization effect in comparison with ultrashort laser.

  • PDF

가공방법에 따른 소형 도광판용 광학패턴 금형의 표면특성연구 (Surface characteristics on the optical pattern die of light guiding plate by machining types)

  • 도영수;김종선;고영배;김종덕;윤경환;황철진
    • Design & Manufacturing
    • /
    • 제2권4호
    • /
    • pp.1-4
    • /
    • 2008
  • Micro pattern is applied to the light guiding plate(LGP) to enhance the uniformity of the brightness of the LCD. The micro cones are molded in intaglio on the surface of the LGP. The surface roughness of each cone was 40nm and 38nm in negative and positive die for laser ablation. In chemical etching, the surface roughness was 25nm, 24nm in negative and positive. And the surface roughness of negative and positive dies were 4nm and 5nm for LIGA-reflow process.

  • PDF

펨토초 레이저의 근접장 효과를 이용한 미세가공 (Sub-micro machining by using near field effect of femto-second laser)

  • 김진범;나석주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.97-99
    • /
    • 2004
  • NSOM(Near-field Scanning Optical Microscope)과 레이저를 이용한 가공 시스템은 근접장 효자를 이용하여 광원의 회절한계보다 작은 나노크기 수준의 점이나 선등의 패턴을 제작하기 위한 공정에 응용되고 있다. (중략)

  • PDF

극초단파 레이저를 이용한 PI 필름 가공 기술개발 (Ultrashort pulse laser induced PI film scribing)

  • 김태동;이호
    • 한국산업융합학회 논문집
    • /
    • 제20권4호
    • /
    • pp.307-311
    • /
    • 2017
  • Ultra short pulse laser processing with the PI (polyimide) substrate is conducted to increase flexibility and radius of curvatures. A femtosecond laser is used to perform micro machining by minimizing the heat effect in PI substrate. The laser processing according to the parameters, such as fabricated line width, depth, laser power, distance between lines, is carried out to understand the characteristics of fabricated lines. A bending test is carried out to evaluate bending shapes and the radius of curvature after bending and spreading it 1000 times. The results demonstrates that the radius of curvature decreases in deepen lines and increases with the augment of the number of the fabricated lines, and distance between lines.

펨토초 레이저에 의한 폴리이마이드 가공 특성 (Micromachined Properties of a polyimide by a femtosecond laser)

  • 민철기;이만섭
    • 한국레이저가공학회지
    • /
    • 제11권2호
    • /
    • pp.20-25
    • /
    • 2008
  • Polyimide is one of the useful materials in industry. The surface treatment of polyimide by a femtosecond laser can help accurate and fine fabrication of microstructure. And it can change the transmittance and reflectance of polyimide, too. We put femtosecond laser pulses on polyimide for rectangular or square type surface treaments and observe the change of transmittance and reflectance. Pulsewidth is 172 fs, laser power changes for fabrication are from 5 mW to 20 mW, and transmittance and reflectance are measured under 20m W, 300m W, and 920 mW. Pulse patterning is stable and almost no unwanted surface damage is shown. As power increases, working depth increases but working line width does not increase significantly. As speed changes, they also have same results. It shows the efficiency of a femtosecond laser is good and thermal damage is small for polyimide.

  • PDF