• Title/Summary/Keyword: Laser melting

Search Result 234, Processing Time 0.029 seconds

Effect of different tooth preparation designs on the marginal and internal fit discrepancies of cobalt-chromium crowns produced by computer-aided designing and selective laser melting processes

  • Yu, Na;Dai, Hong-Wei;Tan, Fa-Bing;Song, Jin-Lin;Ma, Chao-Yi;Tong, Xue-Lu
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.333-342
    • /
    • 2021
  • PURPOSE. To evaluate the impact of five different tooth preparation designs on the marginal and internal fit discrepancies of cobalt-chromium (CoCr) crowns produced by computer-aided designing (CAD) and selective laser melting (SLM) processes. MATERIALS AND METHODS. Five preparation data were constructed, after which design crowns were obtained. Actual crowns were fabricated using an SLM process. After the data of actual crowns were obtained with structural light scanning, intaglio surfaces of the design crown and actual crown were virtually superimposed on the preparation. The fit-discrepancies were displayed with colors, while the root means square was calculated and analyzed with one-way analysis of variance (ANOVA), Tukey's test or Kruskal-Wallis test (α = .05). RESULTS. The marginal or internal color-coded images in the five design groups were not identical. The shoulder-lip and sharp line angle groups in the CAD or SLM process had larger marginal or internal fit discrepancies compared to other groups (P < .05). In the CAD process, the mean marginal and internal fit discrepancies were 10.0 to 24.2 ㎛ and 29.6 to 31.4 ㎛, respectively. After the CAD and SLM processes, the mean marginal and internal fit discrepancies were 18.4 to 40.9 ㎛ and 39.1 to 47.1 ㎛, respectively. The SLM process itself resulted in a positive increase of the marginal (6.0 - 16.7 ㎛) and internal (9.0 - 15.7 ㎛) fit discrepancies. CONCLUSION. The CAD and SLM processes affected the fit of CoCr crowns and varied based on the preparation designs. Typically, the shoulder-lip and sharp line angle designs had a more significant effect on crown fit. However, the differences between the design groups were relatively small, especially when compared to fit discrepancies observed clinically.

Evaluation of marginal and internal fit of metal copings fabricated by selective laser melting (SLM 방식으로 제작한 도재관 금속하부구조물의 변연 및 내면 적합도 평가)

  • Sung-Ryung Bae;Ha-Bin Lee;Mi-Jun Noh;Ji-Hwan Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Purpose: To evaluate the marginal and internal fit of metal coping fabricated by a metal three-dimensional (3D) printer that uses selective laser melting (SLM). Methods: An extraoral scanner was used to scan a die of the prepared maxillary right first molar, and the coping was designed using computer-aided design software and saved as an stereo lithography (STL) file. Ten specimens were printed with an SLM-type metal 3D printer (SLM group), and 10 more specimens were fabricated by casting the castable patterns output generated by a digital light processing-type resin 3D printer (casting the 3D printed resin patterns [CRP] group). The fit was measured using the silicon replica technique, and 8 points (A to H) were set per specimen to measure the marginal (points A, H) and internal (points B~G) gaps. The differences among the groups were compared using the Mann-Whitney U-test (α=0.05). Results: The mean of marginal fit in the SLM group was 69.67±18.04 ㎛, while in the CRP group was 117.10±41.95 ㎛. The internal fit of the SLM group was 95.18±41.20 ㎛, and that of the CRP group was 86.35±32 ㎛. As a result of statistical analysis, there was a significant difference in marginal fit between the SLM and CRP groups (p<0.05); however, there was no significant difference in internal fit between the SLM group and the CRP group (p>0.05). Conclusion: The marginal and internal fit of SLM is within the clinically acceptable range, and it seems to be applicable in terms of fit.

Effect of support thickness on the adaptation of Co-Cr alloy copings fabricated using selective laser melting (출력 지지대 두께가 선택적 레이저 용융법으로 제작된 금속 하부구 조물 적합도에 미치는 영향)

  • Jae-Hong Kim;Se-Yeon Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.3
    • /
    • pp.67-73
    • /
    • 2023
  • Purpose: This in vitro study aimed to evaluate the clinical acceptability of precision of fit of the support thickness of Co-Cr alloy copings fabricated using selective laser melting (SLM). Methods: Thirty dental stone models of maxillary left molar abutments were manufactured, images were taken using a scanner, and a computer-aided design program was used to design the form of a conventional metal ceramic crown coping. Overall, 30 single copings were made from Co-Cr alloy using SLM and divided into three support radius groups (0.1, 0.25, and 0.35 mm) of 10 for each. Digitized data were superimposed with three-dimensional inspection software to quantitatively obtain the machinability of a ceramic crown coping, and visual differences were confirmed using a color map. The root mean square values of the ceramic crown coping group were statistically analyzed using one-way analysis of variance (α=0.05). Results: The precision of fit was superior with 0.25 mm compared with 0.1 mm and 0.35 mm, and the results exhibited significant differences (p<0.05). All specimens showed that various support thicknesses did not exceed the clinically permitted value of 120 ㎛, which mean that more than 0.1 mm and 0.35 mm of support radius for SLM was adequate. Conclusion: The support thickness of Co-Cr alloy restoration fabricated using SLM is shown to affect the adaptation.

Effect of build orientation on the accuracy and internal porosity of removable partial denture metal frameworks (적층 빌드 방향이 가철성 국소의치 금속 구조물의 정확도와 내부 다공성에 미치는 영향)

  • Geon Hee Ham;Ji-Hwan Kim
    • Journal of Technologic Dentistry
    • /
    • v.46 no.3
    • /
    • pp.73-83
    • /
    • 2024
  • Purpose: This study aimed to investigate whether the accuracy and internal porosity of removable partial denture frameworks differ depending on the build direction in the selective laser melting method. Methods: A partially edentulous maxillary study model was scanned, and the anterior-posterior palatal bar was then digitally designed. The angles formed between the z-axis and the path of the insertion and removal were divided into five groups: -60°, -30°, 0°, 30°, and 60°. For each group, three removable partial denture metal frameworks were fabricated and used as specimens. The inner surface of each sample was scanned and superimposed on the design file to obtain the root mean square (RMS) value, and the average RMS value of each group was measured. One sample was randomly selected from each group, and the equivalent diameter and sphericity of the pores were analyzed using industrial X-ray three-dimensional computed tomography. To compare statistical differences between groups, the Kruskal-Wallis test of SPSS Statistics ver. 27.0 (IBM) was used (α=0.05). Results: The average RMS values of the whole inner surface accuracy of the specimens were in the order of -60°<0°<-30°<30°<60° (p<0.05). The equivalent diameter and sphericity of internal pores were significantly different among groups (p<0.001). Conclusion: The build orientation of the selective laser melting method influences the accuracy and internal porosity of removable partial denture frameworks.

Ablation rate study using short pulsed laser subjected to Alumina medium (알루미나 세라믹 소재의 초단파 레이저 어블레이션량 연구)

  • Kim, Kyunghan;Park, Jinho
    • Laser Solutions
    • /
    • v.18 no.4
    • /
    • pp.17-22
    • /
    • 2015
  • In this paper, ablation rate of $Al_2O_3$ ceramics by femtosecond laser fluence is derived with experimental method. The automatic three axis linear stage makes laser optics to move with high spatial resolution. With 10 times objective lens, minimal pattern width of $Al_2O_3$ is measured in the focal plane. Ablated surface area is shown as linear tendency increasing number of machining times with various laser power conditions. Machining times is most sensitive condition to control $Al_2O_3$ pattern width. Also, the linear increment of pattern width with laser power change is investigated. In high machining speed, the ablation volume rate is more linear with fluence because pulse overlap is minimized in this condition. Thermal effect to surrounding medium can be minimized and clean laser process without melting zone is possible in high machining speed. Ablation volume rate decelerates as increasing machining times and multiple machining times should be considered to achieve proper ablation width and depth.

Analysis of rutile single crystals grown by skull melting method (Skull melting법에 의해 성장된 rutile 단결정 분석)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.181-188
    • /
    • 2006
  • Rutile single crystals grown by skull melting method were cut parallel and perpendicular to growth axis, and both sides of the cut wafers (${\phi}5.5mmx1.0mm$) were then polished to be mirror surfaces. The black wafers were changed into pale yellow color by annealing in air at 1200 and $1300^{\circ}C$ for $3{\sim}15\;and\;10{\sim}50$ hours, respectively. After annealing, structural and optical properties were examined by specific gravity (S.G), SEM-electron backscattered pattern (SEM-EBSP), X-ray diffraction (XRD), FT-IR transmittance spectra, laser Raman spectroscopy (LRS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). These results are analyzed increase of weight in air, decrease of weight in water and specific gravity, shown secondary phase of needle shape, diffusion of oxygen ion and increase of $Ti^{3+}$. From the above results, we suggest that the skull melting method grown rutile single crystals contain defect centers such as $O_v,\;Ti^{3+},\;O_v-Ti^{3+}$ interstitials and $F^+-H^+$.

Numerical Simulation considering Latent Heat Effect for Laser Cladding Process (잠열을 고려한 레이저 클래딩 공정의 수치해석)

  • Zhao, Guiping;Si, Ho-Mun;Jo, Jong-Du;Kim, Jae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.134-147
    • /
    • 2001
  • Laser cladding process accompanies phase transformations from melting (on heating) through solidifying (on cooling) at the same time within a small material volume and to final solid phase. The phase transformations are not reversible, but an irreversible thermodynamic process; they accompany either absorption or release of thermal energy (referred to latent heat) during transformation. Yet, most analyses on materials processed by laser as a heat source have been performed on models of neglecting the latent heat in the process and those did not Justify the simplification. With literatures on the laser material process, we have not place an answer to how little the assumption affects on analyses. This led us to our current study: the effects of latent heat on thermo-mechanical analysis. To this end, we developed a fairly accurate program accommodating an algorithm for enforcing the latent heat whenever necessary and ran it combining with ABAQUS$^{TM}$. The simulation techniques we used in this study were verified by directly comparing our prediction with experimental publications elsewhere; our numerical results agreed accurately with the experiments. On the effects of the latent heat, we performed two alternatives about considering the latent heat in analysis, and compared each other. As a result, we found that more accurate conclusions might come out when considering the latent heat in process analyses.s.

  • PDF

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

Laser Surface Alloying of Alloy 600 to Improve Its Corrosion Resistance (Allow 600 합금의 내부식성 향상을 위한 레이저 표면 합금화)

  • 신진국;강석중;서정훈;국일현;김정수
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.16-21
    • /
    • 1999
  • The surface of Alloy 600 was alloyed using a continuous wave $CO_2$ laser beam in order to improve its corrosion resistance. Laser surface alloying (LSA) was done by melting the surface electroplated with Cr of the alloy. The Cr concentration of the alloyed surface was 28-30 at.%, which is similar to that of Alloy 690. Alloying elements in the alloyed layer was observed to be distributed very homogeneously all over the alloyed region. According to the electrochemical and modified Huey tests, the corrosion resistance, in particular the grain boundary corrosion resistance, of the LSA specimens was significantly improved, compared with that of the as-received(AR) specimen. This improved corrosion resistance of the alloyed specimen might be attributed to the high Cr content which could make possible formation of more stable and dense passive film onto its surface.

  • PDF

Laser beam Surface Modification(1): Non-melting Processes (Laser beam 표면개질 (I) : 비용융에 의한 표면개질)

  • 김정수;서정훈
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.25-35
    • /
    • 1997
  • 현재, 표면개질에 주로 많이 사용되는 레이저는 세 종류로서, C $O_{2}$$laser(파장길이:10.6.\mum),$ Nd:YAG(neodymium-doped yettrium aluminum garnet) $laser(파장길이:1.06.\mum)$ 및 excimer laser(157~350nm) 등이다. 이 외에도 초기에는 ruby레이저빔이 사용되기도 하였으나, 현재는 많이 사용되고 있지 않다. 레이저 빔에 의한 표면개질에는 몇가지 장점이 있는데, 이러한 장점은 주로 급속가열과 급속냉각 효과에 기인하는 것이다. 즉, 1) 급냉효과에 의한 미세한 결정입자 형성, 2) 불안정상 (metastable phase) 또는 비정질 상 생성, 3) 열역학적 용해도 보다 높은 용해도. 4) 편석이 없는 균질한 미세조직, 5) 극히 낮은 기공도, 6) 좁은 열영향 부위, 7) 표면층과 모재 사이의 높은 결합력 등이다. 이 외에도 공정상의 장.단점들이 Ref.5, 6에 잘 요약 정리되어 있다. 지금까지 국내에서 레이저 표면개질에 대한 조사가 몇몇 있었으나, 본 조사에서는 보통 많이 다루어지지 않은 부분, 즉 충격경화 및 표면제어에 비중을 두었으며, 비용융 부분(I)과 용융부분(II)을 분리하여 정리하였다.

  • PDF