• Title/Summary/Keyword: Laser machining

Search Result 377, Processing Time 0.03 seconds

An Experimental Study on the Real-Time Tool Breakage Detection in teh Face Milling (정면밀링 가공시 실시간 공구파손검출에 관한 실험적 연구)

  • 김영일;사승윤;최영규;유봉환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.9-14
    • /
    • 1994
  • The modern CNC machine require increasingly an exact monitoring and control of cutting process. They are to make final taret which construct full automation factories as unmanned system. In this study, we decided that we develop new techique to monitor and detect tool breakage on the machining operation using face milling machine with multi-point throwaway tips. The technology in which the tool is illuminated by an beam of Laser is used by image of tool fracture through CCD camera.

  • PDF

Patent and business model analysis of laser micro-machining system (레이저 미세가공 시스템의 특허 및 비즈니스 모델 분석)

  • Kwon, Young-Il;Son, Jong-Ku
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.437-438
    • /
    • 2018
  • 레이저 미세가공 시스템 관련 특허가 일본과 미국에서 1990년대 초반부터 출원이 증가하였으며, 2014년에 가장 많은 특허가 출원되었다. 이스라엘과 미국 국적의 출원인이 1, 2위를 차지하였으며, 전체 375건의 특허 중 상위 10위 출원인의 특허출원 비율이 약 26%로 분석되었다. 비즈니스 모델 분석에서는 비즈니스 모델의 강점을 강화하고 약점을 보완하는 비즈니스 모델 수행 전략을 도출하였다.

  • PDF

Micromachining of Cr Thin Film and Glass Using an Ultrashort Pulsed Laser

  • Choi, Ji-Yeon;Kim, Jae-Gu;Shin, Bo-Sung;Whang, Kyung-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.160-164
    • /
    • 2003
  • Materials processing by ultrashort pulsed laser is actively being applied to micromachining technology due to its advantages with regard to non-thermal machining. In this study, materials processing with ultrashort pulses was studied by using the high repetition rate of a 800 nm Ti:sapphire regenerative amplifier. This revealed that the highly precise micromachining of metallic thin film and bulk glass with a minimal heat affected zone (HAZ) could be obtained by using near damage threshold energy. Grooves with diffraction limited sub-micrometer width were obtained with widths of 620 nm on Cr thin film and 800 nm on a soda-lime glass substrate. The machined patterns were investigated through SEM images. We also phenomenologically examined the influence of variations of parameters and proposed the optimal process conditions for microfabrication.

Development of 3D Burr Measurement Technique using Conoscopic Holography (Conoscopic Holography를 이용한 3D Burr 측정기술 개발)

  • 박상욱;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.951-954
    • /
    • 2003
  • Generally, for the burrs formed in machining are irregular and very sharp in shape, it is usually very difficult to measure burr accurately. But, it is proved that precision measurement for micro burr using the conoprobe sensor by conoscopic holography method is possible. We developed 3D burr measurement system using this sensor. The system is composed of Conoscopic laser Sensor, X-Y table, controller and 3D measurement program. Some measurements using the developed system are applied to burrs formed in micro drilling and piercing.

  • PDF

The OMM system for machined form and surface roughness measurement concerned with volumetric error (기계 체적오차가 고려된 가공형상-거칠기 측정 OMM 시스템)

  • 이상준;김선호;김옥현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.681-686
    • /
    • 2000
  • Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.

  • PDF

The OMM System for Machined Form and Surface Roughness Measurement Concerned with Volumetric Error (기계 체적오차가 고려된 가공형상-거칠기 측정 OMM 시스템)

  • 이상준;김선호;김옥현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.232-240
    • /
    • 2000
  • Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.

  • PDF

CW 및 Pulsed 레이져를 이용한 세라믹 절단

  • 방세윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.156-160
    • /
    • 1994
  • Use of engineering ceramics has been increasing due to the outstanding physical and chemical properties. Conventional machining processes, however, are not applicable due to their hardness and brittleness. Laser cutting is a promising alternative for these ceramics. In this study, experimental data of CO $_{2}$ laser cutting of $Al_{2}$ $O_{3}$ and Si $_{3}$ N $_{4}$ are obtained to give a guide in the industry. Results of $Al_{2}$ $O_{3}$ cutting showed extreme weakness to thermal crack and it was found that pulsed beam has to be used for thick $Al_{2}$ $O_{3}$ specimen. Si $_{3}$ N $_{4}$ showed good results for both CW and pulsed beams. Using pulsed beam resulted narrower kerf width with increased surface roughness a nd reduced cutting speed. It was also found that a parameter call path energy is useful for representing minimum threshold value for possible cutting range with pulsed beam.

  • PDF