• Title/Summary/Keyword: Laser acceleration

Search Result 95, Processing Time 0.02 seconds

Characterization of a Micro-Laser-Plasma Electrostatic-Acceleration Hybrid-Thruster

  • Akira Igari;Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.271-277
    • /
    • 2004
  • As one of the concepts of the laser/electric hybrid propulsion system, a feasibility study on possibilities of electrostatic acceleration of a laser ablation plasma induced from a solid target was conducted. Energy distributions of accelerated ions were measured by a Faraday cup. A time-of-flight measurement was also conducted for ion velocity measurement. It was found that an average speed of ions from a pure laser ablation in this case was about 20 km/sec for pulse energy of 40 $\mu$J/pulse with pulse width of 250 psec. On the other hand, through an electrostatic field with a + I ,000 V electrode, the speed could be accelerated up to 40 km/sec. It was shown that the electrode with positive potential was more effective than that with negative potential for positive-ion acceleration in laser induced plasma, or pulsed plasma, in which ions were induced with the Coulomb explosion following electrons. In addition, the ion-acceleration or deceleration strongly depended on conditions of pairs of inner diameter and electrodes gap.

  • PDF

Study on flexure angle measurement of ring laser gryo and the improvement of flexure error (링레이저 자이로의 플렉셔 각도측정과 플렉셔 오차개선 연구)

  • 조민식;김광진;김정주
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.68-73
    • /
    • 2004
  • Flexure measurement of ring laser gyro was investigated by using an interferometer. A two-beam interferometer of Fiezo-fringe pattern obtained the flexure angle in 1-gravity acceleration and the higher acceleration environments. These environments were made with the addition of dummy mass to the ring laser gyro axis. The flexure angle change for 1-gravity acceleration change was measured as 2.37 arcsec/g with low repeatability error of 0.01 arcsec/g. The laser navigation system consisting of 3 flexure-reduced ring laser gyros showed the improvement of flexure error.

Challenges in the development of the ultrafast electron microscope (초고속 전자 현미경의 개발과 극복 과제)

  • Park, Doo Jae
    • Vacuum Magazine
    • /
    • v.2 no.1
    • /
    • pp.17-20
    • /
    • 2015
  • In this article, a historical and scientific review on the development of an ultrafast electron microscope is supplied, and the challenges in further improvement of time resolution under sub-picosecond or even sub-femtosecond scale is reviewed. By combining conventional scanning electron microscope and femtosecond laser technique, an ultrafast electron microscope was invented. To overcome its temporal resolution limit which originates from chromatic aberration and Coulomb repulsion between individual electrons, a generation of electron pulse via strong-field photoemission has been investigated thoroughly. Recent studies reveal that the field enhancement and field accumulation associated with the near-field formation at sharply etched metal nanoprobe enabled such field emission by ordinary femtosecond laser irradiation. Moreover, a considerable acceleration reaching 20 eV with near-infrared laser and up to 300 eV acceleration with mid-infrared laser was observed, and the possibility to control the amount of acceleration by varying the incident laser pulse intensity and wavelength. Such findings are noteworthy because of the possibility of realizing a sub-femtosecond, few nanometer imaging of nanostructured sample.in silicon as thermoelectric materials.

The Effect of Density Gradient on the Self-modulated Laser Wakefield Acceleration with Relativistic and Kinetic Effects

  • Yoo, Seung-Hoon;Kim, Jae-Hoon;Kim, Jong-Uk;Seo, Ju-Tae;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • The propagation of an intense laser pulse through an upward density-gradient plasma in a self-modulated laser wakefield acceleration (SM-LWFA) is investigated by using particle-in-cell (PIC) simulations. In the fully relativistic and kinetic PIC simulations, the relativistic and kinetic effects including Landau damping enhance the electron dephasing. This electron dephasing is the most important factor for limiting the energy of accelerated electrons. However, the electron dephasing, which is enhanced by relativistic and kinetic effects in the homogeneous plasma, can be forestalled through the detuning process arising from the longitudinal density gradient. Simulation results show that the detuning process can effectively maintain the coherence of the laser wake wave in the spatiotemporal wakefield pattern, hence considerable energy enhancement is achievable. The spatiotemporal profiles are analyzed for the detailed study on the relativistic and kinetic effects. In this paper, the optimum slope of the density gradient for increasing electron energy is presented for various laser intensities.

Effect of fringe divergence in fluid acceleration measurement using LDA (레이저 도플러 원리를 이용한 유체 가속도 측정)

  • Chun, Se-Jong;Nobach, Holger;Tropea, Cam;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1546-1551
    • /
    • 2004
  • The laser Doppler technique is well-established as a velocity measurement technique of high precision for flow velocity. Recently, the laser Doppler technique has also been used to measure acceleration of fluid particles. Acceleration is interesting from a fluid mechanics point of view, since the Navier Stokes equations, specifically the left-hand-side, are formulated in terms of fluid acceleration. Further, there are several avenues to estimating the dissipation rate using the acceleration. However such measurements place additional demands on the design of the optical system; in particular fringe non-uniformity must be held below about 0.0001 to avoid systematic errors. Relations expressing fringe divergence as a function of the optical parameters of the system have been given in the literature; however, direct use of these formulae to minimize fringe divergence lead either to very large measurement volumes or to extremely high intersection angles. This dilemma can be resolved by using an off-axis receiving arrangement, in which the measurement volume is truncated by a pinhole in front of the detection plane. In the present study an optical design study is performed for optimizing laser Doppler systems for fluid acceleration measurements. This is followed by laboratory validation using a round free jet and a stagnation flow, two flows in which either fluid acceleration has been previously measured or in which the acceleration is known analytically. A 90 degree off-axis receiving angle is used with a pinhole or a slit.

  • PDF

Particle Acceleration via Laser Ablation

  • Choi, Ji-Hee;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.566-569
    • /
    • 2008
  • Recently, the biolistic process is emerging as an effective needle-free drug delivery technique to transfer adequate concentrations of pharmacologic agents to soft living tissues with minimum side effects. We have started developing an effective method for delivering drug coated particles using laser ablation. A thin metal foil with deposited micro-particles on one side is irradiated with laser beam on the opposite side so that a shock wave is generated. This shock wave travels through the foil and is reflected, which causes and instantaneous deformation of the foil. Due to such a sudden deformation, the micro-particles are ejected at a very high speed. Here we present the experimental results of direct and confined laser ablation, which correspond to the initial stage of the whole experiment.

  • PDF

Effects of Acceleration and Deceleration Parameters on the Machining Error for Large Area Laser Processing (대면적 레이저 가공을 위한 가감속 파라미터가 가공오차에 미치는 영향)

  • Lee, Jae Hoon;Yoon, Kwang Ho;Kim, Kyung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.721-728
    • /
    • 2014
  • In this paper, it is proposed a method of optimizing path parameters for large-area laser processing. On-the-fly system is necessary for large-area laser processing of uniform quality. It is developed a MOTF(Marking On-The-Fly) board for synchronizing the stage and scanner. And it is introduced the change of the error due to the change of parameters and algorithm for large-area laser processing. This algorithm automatically generates stage path and a velocity profile using acceleration and deceleration parameters. Since this method doesn't use a G-code, even if without expert knowledge, it has an advantage that can be accessed easily. Angle of one of the square of $350{\times}350mm$ was changed from $50^{\circ}$ to $80^{\circ}$ and analyzed the error corresponding to the value of Ta. It is calculated the value of Ta of the best with a precision of 20um through measurement of accuracy according to the Ta of each angle near the edge.

Design of Vehicle Low speed Drive Assistant System with Laser Scanner (레이저스캐너를 이용한 차량저속운전보조장치의 설계)

  • Moon, Hee-Chang;Son, Young-Jin;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.856-864
    • /
    • 2008
  • This paper describes a vehicle low speed driving assistant (VLDA) system that is composed of laser scanner. This vehicle is designed for following lead vehicle (LV) without driver's operation. The system is made up several component systems that are based on unmanned ground vehicle (UGV). Each component system is applied to use advanced safety vehicle developed to complete UGV system. VLDA system was divided into vehicle control system and obstacle detecting system. The obstacle detecting system calculate distance and angle of LV and transmit these data to vehicle control system using front, left and right laser scanners. Vehicle control system makes vehicle control values such as steering angle, acceleration and brake position and control vehicle's movement with steering, acceleration and brake actuators. In this research, we designed VLDA system like as low speed cruise control system and test it on real road environments.

Thrust Characteristics of a Laser-Assisted Pulsed Plasma Thruster

  • Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.294-299
    • /
    • 2004
  • An assessment of a novel laser-electric hybrid propulsion system was conducted, in which a laser-induced plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. A fundamental study of newly developed rectangular laser-assisted pulsed-plasma thruster (PPT) was conducted. On discharge characteristics and thrust performances with increased peak current compared to our previous study to increase effects of electromagnetic forces on plasma acceleration. Maximum peak current increased for our early study by increasing electromagnetic effects in a laser assisted PPT. At 8.65 J discharge energy, the maximum current reached about 8000 A. Plasma behaviors emitted from a thruster in various cases were observed with an ICCD camera. It was shown that the plasma behaviors were almost identical between low and high voltage cases in initial several hundred nanoseconds, however, plasma emission with longer duration was observed in higher voltage cases. Canted current sheet structures were also observed in the higher voltage cases using a larger capacitor. With a newly developed torsion-balance type thrust stand, thrust performances of laser assisted PPT could be estimated. The impulse bit and specific impulse linearly increased. On the other hand, coupling coefficient and the thrust efficiency did not increase linearly. The coupling coefficient decreased with energy showing maximum value (20.8 ?Nsec/J) at 0 J, or in a pure laser ablation cases. Thrust efficiency first decreased with energy from 0 to 1.4 J and then increased linearly with energy from 1.4 J to 8.6 J. At 8.65 J operation, impulse bit of 38.1 ?Nsec, specific impulse of 3791 sec, thrust efficiency of 8 %, and coupling coefficient of 4.3 ?Nsec/J were obtained.

  • PDF

Particle Acceleration by High Power (> TW) Femtosecond Lasers in Plasmas (고출력 펨토초 레이저와 플라즈마를 이용한 입자가속)

  • Suk, H.;Hafz, N.;Kim, C.B.;Kim, G.H.;Kim, J.U.;V. Kulagin;Lee, H.J.;Kim, J.C.;Ko, I.S.;Hahn, S.J.;Pae, G.H.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.62-62
    • /
    • 2003
  • Charged particles can be accelerated to relativistic high energies by high power (> terawatt) laser beams. We have a research project on laser and plasma-based advanced accelerators in Center for Advanced Accelerators at Korea Electrotechnology Research Institute (KERI), in which the 2 TW (1.4 J/700 fs) Ti:sapphire/Nd:glass hybrid laser system and a He plasma will be used for particle acceleration experiments. In this presentation, we introduce the ongoing research activities and the planned experiments at KERI.

  • PDF