• 제목/요약/키워드: Laser ablation technique

검색결과 52건 처리시간 0.029초

액상에서의 엑시머 레이저 실리콘 미세가공 (Excimer laser micromachining of silicon in liquid phase)

  • 장덕석;김동식
    • 한국레이저가공학회지
    • /
    • 제11권1호
    • /
    • pp.12-18
    • /
    • 2008
  • Laser micromachining is a promising technique to fabricate the micro-scale devices. However, there remains important challenges to reducethe redeposition of ablated materials around the laser irradiated zone and to get a smooth surface, especially for metal and semiconductor materials. To achieve the high-quality micromachined devices, various methods have been developed. Liquid-assisted micromachining can be a good solution to overcome the previously mentioned problems. During the laser ablation process, the liquid around the solid sample dramatically changes the ablation characteristics, such as ablation rate, surface profile, formation of debris, and so on. In this investigation, we conducted the laser micromachining of Si in various liquid environmental conditions, such as liquid types, liquid thickness. In addition, using nanoscale time-resolved shadowgraphy technique, we observed the ablation process in liquid environments to understand the mechanism of liquid-assisted laser micromachining.

  • PDF

Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

  • Song, Kyu-Seok;Cha, Hyung-Ki;Kim, Duk-Hyeon;Min, Ki-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권1호
    • /
    • pp.101-105
    • /
    • 2004
  • The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ~1,500 for the ytterbium.

Femtosecond Laser Ablation of Polymer Thin Films for Nanometer Precision Surface Patterning

  • Jun, Indong;Lee, Jee-Wook;Ok, Myoung-Ryul;Kim, Yu-Chan;Jeon, Hojeong
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.20-25
    • /
    • 2016
  • Femtosecond laser ablation of ultrathin polymer films on quartz glass using laser pulses of 100 fs and centered at ${\lambda}=400nm$ wavelength has been investigated for nanometer precision thin film patterning. Single-shot ablation craters on films of various thicknesses have been examined by atomic force microscopy, and beam spot diameters and ablation threshold fluences have been determined by square diameter-regression technique. The ablation thresholds of polymer film are about 1.5 times smaller than that of quartz substrate, which results in patterning crater arrays without damaging the substrate. In particular, at a $1/e^2$ laser spot diameter of $0.86{\mu}m$, the smallest craters of 150-nm diameter are fabricated on 15-nm thick film. The ablation thresholds are not influenced by the film thickness, but diameters of the ablated crater are bigger on thicker films than on thinner films. The ablation efficiency is also influenced by the laser beam spot size, following a $w_{0q}{^{-0.45}}$ dependence.

INVAR 마스크 응용 반도체 기판 소재의 고체 UV 레이저 프로젝션 어블레이션 (DPSS UV Laser Projection Ablation of IC Substrates using an INVAR Mask)

  • 손현기;최한섭;박종식
    • 한국레이저가공학회지
    • /
    • 제15권4호
    • /
    • pp.16-19
    • /
    • 2012
  • Due to the fact that the dimensions of circuit lines of IC substrates have been forecast to reduce rapidly, engraving the circuit line patterns with laser has emerged as a promising alternative. To engrave circuit line patterns in an IC substrate, we used a projection ablation technique in which a metal (INVAR) mask and a DPSS UV laser instead of an excimer laser are used. Results showed that the circuit line patterns engraved in the IC substrate have a width of about 15um and a depth of $13{\mu}m$. This indicates that the projection ablation with a metal mask and a DPSS UV laser could feasibly replace the semi-additive process (SAP).

  • PDF

Particle Acceleration via Laser Ablation

  • Choi, Ji-Hee;Yoh, Jai-Ick
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.566-569
    • /
    • 2008
  • Recently, the biolistic process is emerging as an effective needle-free drug delivery technique to transfer adequate concentrations of pharmacologic agents to soft living tissues with minimum side effects. We have started developing an effective method for delivering drug coated particles using laser ablation. A thin metal foil with deposited micro-particles on one side is irradiated with laser beam on the opposite side so that a shock wave is generated. This shock wave travels through the foil and is reflected, which causes and instantaneous deformation of the foil. Due to such a sudden deformation, the micro-particles are ejected at a very high speed. Here we present the experimental results of direct and confined laser ablation, which correspond to the initial stage of the whole experiment.

  • PDF

A SE Approach to Designing and Developing of Motion Control for Radioactive Waste Decontamination

  • Ngbede, Utah Michael;Olaide, Oluwasegun Adebena;Jung, Jae Cheon
    • 시스템엔지니어링학술지
    • /
    • 제17권1호
    • /
    • pp.11-20
    • /
    • 2021
  • Decontamination of systems, structures and components (SSC) during the decommissioning of a Nuclear Power Plant (NPP) can be for a variety of reasons. The main reasons for decontamination are: to reduce the contamination of SSC to a reasonably low level, to reduce the potential for the spread of contaminants into the environment and to reduce the cost of disposal due to the reduced level of contamination in a particular SSC. The decontamination technique can be aggressive or non-aggressive depending on the intent after the decontamination process. Aggressive decontamination technique is used when the intent is not to reuse the SSC while a non-aggressive decontamination technique is used with the intent of SSC reuse. For different SSCs there are different decontamination techniques that can be used, each having its own advantages and drawbacks. Metal components such as pipes in the nuclear power plant account for a large amount of nuclear wastes generated. Some of these wastes can be reused if the contaminant level is reduced to an acceptable level. Laser ablation is a non-aggressive decontamination technique that can be used to reduce the contamination in pipes to an acceptable level with no secondary waste generated during the process. The operation and control of a laser ablation device must be precise to achieve a high decontamination factor. This precision can be achieved by a well-designed motion control system. For this purpose, a motion control system was developed consisting of two parts: the first part being the precise control of the laser ablation device inside the pipe and the second part is the control of the laser ablation device outside the pipe. This paper describes the Systems Engineering approach for the development process of a motion control system for the Laser decontamination system.

레이저 애벌레이션 분광을 이용한 고분자 표면의 나노미터 스케일 표면 분석 (Nanometer-Scale Surface Analysis of Polymers Using Laser Ablation Spectroscopy)

  • 김민규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1334-1336
    • /
    • 2001
  • In this study, laser ablation atomic fluorescence (LAAF) spectroscopy has been applied for a nanometer-scale surface analysis of Na-doped polymethyl methacrylate (PMMA). LAAF spectroscopy is a new sensitive element detection technique which involves atomizing of a sample by the laser ablation and detection of ablated plume by laser-induced fluorescence (LIF) spectroscopy. Using this technique in the detection of Na atoms with Na-doped PMMA, a detection limit is obtained as 36 fg for single laser shot. Further, the depth distribution in the sample is measured with a very high spatial resolution using a two-layer PMMA sample by observing the shot-by-shot LIF intensity from the Na atoms.

  • PDF

Finite element modeling of laser ultrasonics nondestructive evaluation technique in ablation regime

  • Salman Shamsaei;Farhang Honarvar
    • Advances in Computational Design
    • /
    • 제8권3호
    • /
    • pp.219-236
    • /
    • 2023
  • In this paper, finite element modeling of the laser ultrasonics (LU) process in ablation regime is of interest. The momentum resulting from the removal of material from the specimen surface by the laser beam radiation in ablation regime is modeled as a pressure pulse. To model this pressure pulse, two equations are required: one for the spatial distribution and one for the temporal distribution of the pulse. Previous researchers have proposed various equations for the spatial and temporal distributions of the pressure pulse in different laser applications. All available equations are examined and the best combination of the temporal and spatial distributions of the pressure pulse that provides the most accurate results is identified. This combination of temporal and spatial distributions has never been used for modeling laser ultrasonics before. Then by using this new model, the effects of variations in pulse duration and laser spot radius on the shape, amplitude, and frequency spectrum of ultrasonic waves are studied. Furthermore, the LU in thermoelastic regime is simulated by this model and compared with LU in ablation regime. The interaction of ultrasonic waves with a defect is also investigated in the LU process in ablation regime. Good agreement of the results obtained from the new finite element model and available experimental data confirms the accuracy of the proposed model.

레이저 증착법에 의한 탄소계 박막의 구조 및 전계방출특성 (Deposition of Carbon Thin Film using Laser Ablation and Its Field Emission Properties)

  • 류정탁;;김연보
    • 한국전기전자재료학회논문지
    • /
    • 제15권7호
    • /
    • pp.634-639
    • /
    • 2002
  • Using laser ablation technique carbon thin films were deposited on Si(100) substrate as a function of substrate temperature. In this study, the surface morphologic, structural and field emission properties of these carbon thin films were investigated using Raman spectroscopy, scanning electron microscopy, and a diode technique, respectively. With increasing of the substrate temperature, the surface morphologies were changed significantly. Moreover, the intensity of D-band and the full width at half maximum of these bands were dependent on substrate temperatures. As the substrate temperature was increased, the field emission properties were improved. As the result, we find that the field emission properties of the films were changed significantly with the substrate temperature and structural features of carbon than films.

레이저 증착법에 의한 비정질 탄소계 박막의 제작 (Fabrication of amorphous carbon thin film using laser ablation technique)

  • 류정탁;김연보;조경제
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.484-487
    • /
    • 2001
  • Amorphous carbon thin films were deposited using laser ablation technique on Si(100) substrates at different temperatures. In this study, effects of the substrate temperature on the properties of amorphous carbor, films were systematically investigated. The surface morphologic and structural properties of the films were studied by scanning electron microscopy (SEM) and raman spectroscope, respectively. With increasing of the substrate temperature, the surface morphologies were changed significantly. Moreover the intensity ratio of D-band and G-band and the full width at half maximum of these bands were dependent on substrate temperatures.

  • PDF