• Title/Summary/Keyword: Laser Scanning Microscope

Search Result 323, Processing Time 0.028 seconds

A Study on the Radius of Curvature of Concave Optical Fiber Tips fabricated by Laser-Induced Photothermal Effect (레이저 유도 광열 효과를 이용하여 제작된 오목한 광섬유 팁의 곡률 반경에 관한 연구)

  • Choi, Ji-Won;Son, Gyeong-Ho;Yu, Kyoung-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.871-876
    • /
    • 2019
  • We fabricated concave optical fiber tips using hydrofluoric acid solution and photothermal effect induced by $1.55{\mu}m$ wavelength laser applied to an optical fiber. The radius of curvature of the concave optical fiber tips fabricated with different applied laser power, etching time, and concentration of hydrofluoric acid was measured with an optical microscope. Then, we analyzed how the radius of curvature changes for those three variables. In addition, the reliability of the measurement method using a microscope was verified through a free spectral range(FSR) and a scanning electron microscope(SEM). Through this paper, the radius of curvature can be adjusted by the variables of the fabrication process of concave optical fiber tips; thus, it is overcoming the limitations of conventional optical fiber etching methods using hydrofluoric acid solutions.

Microstructures and Mechanical Properties of $ZrO_2-8%Y_2O_3$ Coating Layer by Plasma/Laser Complex Spraying (플라즈마/레이저 복합용사에 의한 $ZrO_2-8%Y_2O_3$ 코팅층의 미세구조 및 기계적 특성)

  • Kim, Y.S.;Oh, M.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.48-53
    • /
    • 2000
  • This study was aimed at observing the influence of laser irradiation on a $ZrO_2-8%Y_2O_3$ ceramic coating layer fabricated by plasma spraying. The $ZrO_2-8%Y_2O_3$ ceramic powder was plasma sprayed onto SS400 carbon steel substrate and laser irradiated on the coating layer under various conditions of laser power and beam diameters. As to the as-sprayed specimen and laser-treated specimen, a hardness test and a microstructure analysis were performed. Hardness was measured by a microhardness tester; microstructure was observed by an optical microscope and a scanning electron microscope. The result was that the microstructure of the laser-irradiated coating layer was dense; porosities almost disappeared and hardness increased. It was also observed that microcracks occured in the laser-irradiated coating layer.

  • PDF

Comparison of removal torques between laser-treated and SLA-treated implant surfaces in rabbit tibiae

  • Kang, Nam-Seok;Li, Lin-Jie;Cho, Sung-Am
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.302-308
    • /
    • 2014
  • PURPOSE. The purpose of this study was to compare removal torques and surface topography between laser treated and sandblasted, large-grit, acid-etched (SLA) treated implants. MATERIALS AND METHODS. Laser-treated implants (experimental group) and SLA-treated implants (control group) 8 mm in length and 3.4 mm in diameter were inserted into both sides of the tibiae of 12 rabbits. Surface analysis was accomplished using a field emission scanning electron microscope (FE-SEM; Hitachi S-4800; Japan) under ${\times}25$, ${\times}150$ and ${\times}1,000$ magnification. Surface components were analyzed using energy dispersive spectroscopy (EDS). Rabbits were sacrificed after a 6-week healing period. The removal torque was measured using the MGT-12 digital torque meter (Mark-10 Co., Copiague, NY, USA). RESULTS. In the experimental group, the surface analysis showed uniform porous structures under ${\times}25$, ${\times}150$ and ${\times}1,000$ magnification. Pore sizes in the experimental group were 20-40 mm and consisted of numerous small pores, whereas pore sizes in the control group were 0.5-2.0 mm. EDS analysis showed no significant difference between the two groups. The mean removal torque in the laser-treated and the SLA-treated implant groups were 79.4 Ncm (SD = 20.4; range 34.6-104.3 Ncm) and 52.7 Ncm (SD = 17.2; range 18.7-73.8 Ncm), respectively. The removal torque in the laser-treated surface implant group was significantly higher than that in the control group (P=.004). CONCLUSION. In this study, removal torque values were significantly higher for laser-treated surface implants than for SLA-treated surface implants.

The study of laser processing parameter for $\mu$-BGA cutting ($\mu$-BGA 절단을 위한 레이저 가공 파라미터 연구)

  • Baek, kwang-yeol;Lee, cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.652-655
    • /
    • 2001
  • In this paper, I have studied minimization of the kerf-width and surface burning which are occurred after the singulation process of multi layer $\mu$-BGA( thickness 1.1 mm, 0.9 mm) with a pulsed Nd:YAG( = 532 nm, repetition rate = 10 Hz) laser. The thermal energy of a pulsed Nd:YAG laser is used to cut the copper layer. I have studied are minimization of the surface burning and kerf-width using a photo resist, $N_2$blowing and polyester double sided tape as a cutting parameter. The $N_2$blowing reduces a laser energy loss by debris and suppresses a surface carbonization. Also, I have studied characters of cutting with a choice of side of laser beam incidence. The SEM(Scanning Electron Microscope), non-contact 3D inspector and high-resolution microscope are used to measure kerf width and surface state. The optimum value of 1.1 mm $\mu$-BGA singulation is 524 $\mu$m that is reduced kerf width of 60 % with $N_2$blowing. And I obtained reduction of carbonization of 68 % with a polyester double side tape in 0.9 mm $\mu$-BGA. I used laser intensity of 1.91$\times$10$^{6}$ / $\textrm{cm}^2$ in this study.

  • PDF

Patterning of ITO on Touch Screen Panels using a beam shaped femtosecond laser (빔 쉐이핑된 펨토초 레이저를 이용한 터치스크린 패널의 ITO 박막 패터닝)

  • Kim, Myung-Ju;Kim, Yong-Hyun;Yoon, Ji-Wook;Choi, Won-Seok;Cho, Sung-Hak;Choi, Jiyeon
    • Laser Solutions
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • Femtosecond laser patterning of ITO on a touch screen panel with a shaped fs laser beam was investigated. A quasi flat-top beam was formed using a variable mask and a planoconvex lens. The spatial profile of the original Gaussian beam and the shaped beam were monitored by a CCD beam profiler. The laser patterned ITO film was examined using an optical microscope, Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), and Atomic Force Microscope (AFM). It turned out that the quality of the ITO pattern fabricated by a shaped beam is superior to that of the pattern without beam shaping in terms of debris generation, height of the craters, and homogeneity of the bottom. Optimum processing window was determined at the laser irradiance exhibiting 100% removal of Sn. The removal rate of In was measured to be 83%.

  • PDF

Flow Visualization of Blood Cell and Detection of Cell Depleted Layer Using a Confocal Laser Scanning Microscope (공초점 레이저 주사 현미경을 이용한 혈구 유동가시화 및 세포공핍층 측정에 관한 연구)

  • Lim, Soo-Hee;Kim, Wi-Han;Lee, Ho;Lee, Choon-Young;Park, Cheol-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • In the present study, we employed the confocal laser scanning microscopy (CLSM) system to visualize the blood flow field with $1{\times}1{\mu}m^2$ spatial resolution. Based on the confocal microscopic image of red blood cells (RBCs), we performed the velocity vector field measurement and evaluated characteristics of cell migration from the cell depleted layer thickness calculation. The rat and mouse's blood were supplied into a micro glass tubes in vitro. The line scanning rate of confocal microscopy was 15 kHz for a $500{\times}500$ pixels image. As a result, the red blood cell itself can be used as a tracer directly without any kind of invasive tracer particle to get the velocity vector field of blood flow by performing particle image velocimetry (PIV) technique.

Nanoscale Patterning Using Femtosecond Laser and Self-assembled Monolayers (SAMs) (펨토초레이저와 자기조립박막을 이용한 나노스케일 패터닝)

  • Chang, Won-Seok;Choi, Moo-Jin;Kim, Jae-Gu;Cho, Sung-Hak;Whang, Kyung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1270-1275
    • /
    • 2004
  • Standard positive photoresist techniques were adapted to generate nano-scale patterns of gold substrate using self-assembled monolayers (SAMs) and femtosecond laser. SAMs formed by the adsorption of alkanethiols onto gold substrate are employed as very thin photoresists, Alkanethiolates formed by the adsorption of alkanethiols are oxidized on exposure to UV light in the presence of air to alkylsulfonates. Specifically, it is known that deep UV light of wavelength less than 200nm is necessary for oxidation to occur. In this study, ultrafast laser of wavelength 800nm and pulse width 200fs is applied for photolithography. Results show that ultrafast laser of visible range wavelength can replace deep UV laser source for photo patterning using thin organic films. Femtosecond laser coupled near-field scanning optical microscopy facilitates not only the patterning of surface chemical structure, but also the creation of three-dimensional nano-scale structures by combination with suitable etching methods.

Micromachining & Optical Properties of Li$_2$O-A1$_2$O$_3$-SiO$_2$ Glass System by Laser Treatment (레이저에 의한 Li$_2$O-A1$_2$O$_3$-SiO$_2$계 유리의 미세가공 및 광학적 특성)

  • 강원호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.43-45
    • /
    • 2001
  • For photosensitive and micro-structuring in $Li_2O-A1_2O_3-SiO_2$glasses by laser treatment, Nd:YAG laser in 355 nm and 1064 nm wavelength was irradiated to the glass to investigate fracture characterization and optical changes. The fractured glass surfaces irradiated by 1064 nm laser was observed by Scanning Electron Microscope(SEM) and optical microscope, and optical changes caused by 355 nm later was identified from absorption spectra. In this study, it could be expected that the laser treatment technology will be utilized for 3-dimensional micro-structure, internal waveguide, optical memory by optical absorption changes in glass matrix.

  • PDF

Laser Micromachining of Submicron Aperture for Electronbeam Microcolumn Application using Piezo Q-Switched Nd:YAG Laser

  • S.J. Ahn;Kim, D.W.;Park, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.78-78
    • /
    • 1999
  • Experimental studies of laser micromachining on Mo metal using piezo Q-switched Nd:YAG laser have been performed. Miniaturized microcolumn electron gun arrays as a potential electron beam lithography or portable mini-scanning electron microscope application have recently extensively examined. For these purpose, the electro-static electron lens and deflector system called microcolumn has to be assembled. The conventional microcolumn fabrication technique would gave a limitation on the minimization of aberration. The current technique of a 1 $\mu$m misalignment would lead to ~1.3 nm coma. In order to reduce aberration, assembling the microcolumn component followed by laser drilling should be very beneficial. In this report, we will address the preliminary report of laser micromachining on Mo substrate using piezo Q-switched Nd:YAG laser. The geometrical figures, such as the diameter and the depth of the frilled aperture are dependent upon the total energy of the laser pulse train, laser pulsewidth, and the diameter of laser beam in addition to the materials-dependent parameters.

  • PDF