• Title/Summary/Keyword: Laser Frit Sealing

Search Result 7, Processing Time 0.022 seconds

Additional Study on the Laser Sealing of Dye-Sensitized Solar-Cell-Panels Using V2O5 and TeO2 Containing Glass

  • Cho, Sung-Jin;Lee, Kyoungho
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.103-107
    • /
    • 2015
  • The effective glass frit composition used to absorb laser energy and to seal commercial dye-sensitized solar cell panel substrates has been previously developed using $V_2O_5-TeO_2$-based glass with 10 wt% ${\beta}$-eucryptite as a CTE controlling filler. The optimum sealing conditions are provided using a 3 mm beam, a laser power of 40 watt, a scan speed of 300 mm/s, and 200 irradiation cycles. In this study, the feasibility of the developed glass frit is investigated in terms of the sealing strength and chemical durability against the commercial iodide/triiodide electrolyte solution and fluorine-doped tin oxide (FTO) electrode in order to increase the solar cell lifetime. The sealing strength of the laser-sealed $V_2O_5-TeO_2$-based glass frit is $20.5{\pm}1.7MPa$, which is higher than those of thermally sealed glass frit and other reported glass frit. Furthermore, the developed glass frit is chemically stable against electrolyte solutions. The glass frit constituents are not leached out from the glass after soaking in the electrolyte solution for up to three months. During the laser sealing, the glass frit does not react with the FTO electrode; thus, the resistivity of the FTO electrode beneath the laser-sealed area remains the same.

Synthesis of P2O5-V2O5-ZnO Glass Frit for Laser Sealing of OLED by the Addition of Filler (필러 첨가에 의한 OLED의 레이저 실링용 P2O5-V2O5-ZnO 유리프릿의 제조)

  • Bang, Jae-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.571-576
    • /
    • 2015
  • In this study, we developed a lead-free $P_2O_5-V_2O_5-ZnO$ glass frit for sealing OLED using laser irradiation. The frit satisfied the characteristics required for laser sealing such as low glass transition temperature, low coefficient of thermal expansion (CTE), high water-resistance, and high absorption at the wavelength of the laser beam. Ceramic fillers were added to the glass frit in order to further reduce and match its CTE with that of the commercial glass substrate. The addition of Zirconium Tungsten Phosphate (ZWP) to the frit yielded the most desirable results, reducing the CTE to $45.4{\times}10^{-7}/^{\circ}C$, which is very close to that of the glass substrate ($44.0{\times}10^{-7}/^{\circ}C$). Successful formation of a solid sealing layer was observed by optical and scanning electron microscopy.

Laser Sealing of Dye-Sensitized Solar Cell Panels Using V2O5 and TeO2 Contained Glass (V2O5 및 TeO2 함유 유리를 이용한 염료감응형 태양전지 패널의 레이저 봉착)

  • Cho, Sung Jin;Lee, Kyoung Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.170-176
    • /
    • 2014
  • Effective glass frit compositions enabled to absorb laser energy, and to seal a commercial dye-sensitized solar-cell-panel substrate were developed by using $V_2O_5$-based glasses with various amounts of $TeO_2$ substitution. The latter was intended to increase the lifetime of the solar cells. Substitution of $V_2O_5$ by $TeO_2$ provided a strong network structure for the glasses via the formation of tetrahedral pyramids in the glass, and changed the various glass properties, such as glass transition temperature ($T_g$), dilatometric softening point ($T_d$), crystallization temperature, coefficient of thermal expansion (CTE), and glass flowage without any detrimental effect on the laser absorption property of the glasses. The thermal expansion mismatch (${\Delta}{\alpha}$) between the glass frit and the substrate could be controlled within less than ${\pm}5%$ by addition of 10 wt% of ${\beta}$-eucryptite. An 810 nm diode laser was used for the sealing test. The laser sealing test revealed that the VZBT20 glass frit with 10 wt% ${\beta}$-eucryptite was successfully sealed the substrates without interfacial cracks and pores. The optimum sealing conditions were provided by a beam size of 3 mm, laser power of 40 watt, scan speed of 300 mm/s, and 200 irradiation cycles.

Laser Processing Technology in Semiconductor and Display Industry (반도체 및 디스플레이 산업에서의 레이저 가공 기술)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.32-38
    • /
    • 2010
  • Laser material processing technology is adopted in several industry as alternative process which could overcome weakness and problems of present adopted process, especially semiconductor and display industry. In semiconductor industry, laser photo lithography is doing at front-end level, and cutting, drilling, and marking technology for both wafer and EMC mold package is adopted. Laser cleaning and de-flashing are new rising technology. There are 3 kinds of main display industry which use laser technology - TFT LCD, AMOLED, Touch screen. Laser glass cutting, laser marking, laser direct patterning, laser annealing, laser repairing, laser frit sealing are major application in display industry.

Investigation of Glass Substrate Sealing for ECL Application using Laser Welding Technology (레이저 웰딩 기술을 이용한 ECL용 유리 기판 접합에 대한 고찰)

  • Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.28-32
    • /
    • 2015
  • In this work, we reported fabrication of sealing the glass substrate using laser treatment at low temperature for electrochemical luminescence (ECL) cell. The laser treatment at temperature is using laser diode. The glass substrate sealing by laser treatment tested at 3-10W, 2-5 mm/s for build and tested. The sealing laser treatment method will allow associate coordination between the two glass substrate was enclosed. The effect of laser treatment to sealing the glass substrate was found to have cracks and air gap at best thickness of about 550-600 im for condition 3 W, 3 mm/s. The surface of sealing was roughness which was not influent to electrodes It can reduce the cracks, crevices and air gaps as well, improves the performance viscosity in butter bus bar electrodes. Therefore, it is more effective viscosity between two FTO glasses substrate.

Temperature Distribution According to the Structure of a Conductive Layer during Joule-heating Induced Encapsulation for Fabrication of OLED Devices (OLED 소자 제조를 위한 주울 가열 봉지 공정 시 도전층 구조에 따르는 열분포)

  • Jang, Ingoo;Ro, Jae-Sang
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.4
    • /
    • pp.162-167
    • /
    • 2013
  • Encapsulation is required since organic materials used in OLED devices are fragile to water vapor and oxygen. Laser sealing method is currently used where IR laser is scanned along the glass-frit coated lines. Laser method is, however, not suitable to encapsulating large-sized glass substrate due to the nature of sequential scanning. In this work we propose a new method of encapsulation using Joule heating. Conductive layer is patterned along the sealing lines on which the glass frit is screen printed and sintered. Electric field is then applied to the conductive layer resulting in bonding both the panel glass and the encapsulation glass by melting glass-frit. In order to obtain uniform bonding the temperature of a conductive layer having a shape of closed loop should be uniform. In this work we conducted simulation for heat distribution according to the structure of a conductive layer used as a Joule-heat source. Uniform temperature was obtained with an error of 5% by optimizing the structure of a conductive layer. Based on the results of thermal simulations we concluded that Joule-heating induced encapsulation would be a good candidate for encapsulation method especially for large area glass substrate.

Effect of V2O5 Content and Pre-Sintering Atmosphere on Adhesive Property of Glass Frit for Laser Sealing of OLED (OLED 레이저 실링용 글라스 프릿에서 V2O5 함량 및 가소성 분위기가 접합 특성에 미치는 영향)

  • Jeong, HyeonJin;Lee, Mijai;Lee, Youngjin;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Jungsoo;Yang, Yunsung;Youk, Sookyung;Park, Tae-Ho;Moon, Yun-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.489-493
    • /
    • 2016
  • In this study, the effect of vanadium oxide ($V_2O_5$) content and pre-sintering atmosphere on sealing property of glass frit that consisted of $V_2O_5-BaO-ZnO-P_2O_5-TeO_2-CuO-Fe_2O_3-SeO_2$ was investigated by XPS (X-ray photoelectron spectroscopy). The content of V2O5 was changed to 15, 30, and 45 mol%, and the pre-sintering was carried out in air and $N_2$ condition, respectively. XPS analysis conducted before and after laser irradiation with identical sample. Before laser treatment, glass frits that were pre-sintered at air condition showed both $V^{4+}$ and $V^{5+}$, but the valence state was changed to $V^{5+}$ after laser irradiation when the glass frits contained 30 and 45 mol% $V_2O_5$; this change led to non-adhesive property. On the other hand, glass frits that were pre-sintered at $N_2$ condition exhibited only $V^{4+}$ and it showed fine adhesion irrespective of the $V_2O_5$ content. As a result, the existence of $V^{4+}$ seems to be a major factor for controlling the adhesive property of glass frit for laser sealing.