DOI QR코드

DOI QR Code

Laser Sealing of Dye-Sensitized Solar Cell Panels Using V2O5 and TeO2 Contained Glass

V2O5 및 TeO2 함유 유리를 이용한 염료감응형 태양전지 패널의 레이저 봉착

  • Cho, Sung Jin (Department of Display Materials Engineering, Soonchunhayng University) ;
  • Lee, Kyoung Ho (Department of Display Materials Engineering, Soonchunhayng University)
  • 조성진 (순천향대학교 디스플레이신소재공학과) ;
  • 이경호 (순천향대학교 디스플레이신소재공학과)
  • Received : 2014.04.03
  • Accepted : 2014.05.03
  • Published : 2014.05.31

Abstract

Effective glass frit compositions enabled to absorb laser energy, and to seal a commercial dye-sensitized solar-cell-panel substrate were developed by using $V_2O_5$-based glasses with various amounts of $TeO_2$ substitution. The latter was intended to increase the lifetime of the solar cells. Substitution of $V_2O_5$ by $TeO_2$ provided a strong network structure for the glasses via the formation of tetrahedral pyramids in the glass, and changed the various glass properties, such as glass transition temperature ($T_g$), dilatometric softening point ($T_d$), crystallization temperature, coefficient of thermal expansion (CTE), and glass flowage without any detrimental effect on the laser absorption property of the glasses. The thermal expansion mismatch (${\Delta}{\alpha}$) between the glass frit and the substrate could be controlled within less than ${\pm}5%$ by addition of 10 wt% of ${\beta}$-eucryptite. An 810 nm diode laser was used for the sealing test. The laser sealing test revealed that the VZBT20 glass frit with 10 wt% ${\beta}$-eucryptite was successfully sealed the substrates without interfacial cracks and pores. The optimum sealing conditions were provided by a beam size of 3 mm, laser power of 40 watt, scan speed of 300 mm/s, and 200 irradiation cycles.

Keywords

References

  1. J. Y. Lee, B. Bhattachara, Y. H. Kim, H. T. Jung, and J. K. Park, "Self Degradation of Polymer Electrolyte Based Dye-Sensitized Solar Cells and Their Remedy," Solid State Commun., 149 [7-8] 307-09 (2009). https://doi.org/10.1016/j.ssc.2008.11.033
  2. H. L. Lu, T. F. Shen, S. T. Huang, Y. L. Tung, and T. K. Yang, "The Degradation of Dye Sensitized Solar Cell in the Presence of Water Isotopes," Sol. Energy Matter. Sol. Cells, 95 [7] 1624-9 (2011). https://doi.org/10.1016/j.solmat.2011.01.014
  3. D. Faidel, W. Behr, S. Gross, and U. Reisgen, "Glass Sealing Materials and Laser Joining Process Developed for Fuel Cell Stack Manufacturing," Materialwiss. Werkstofftech., 41 [11] 914-24 (2010). https://doi.org/10.1002/mawe.201000685
  4. Y. H. Jeon, J. H. Hwang, T. Y. Lim, Z. S. Ahn, and H. L. Lee, "Characterization of Residual Stress and Pore Distribution in Sealed Area of Large PDP Panel," Mol. Cryst. Liquid Cryst., 470 [1] 383-91 (2007). https://doi.org/10.1080/15421400701503691
  5. R. Grunwald and H. Tributsch, "Mechanisms of Instability in Ru-Based Dye-Sensitization Solar Cells," J. Phys. Chem. B, 101 [14] 2564-75 (1997). https://doi.org/10.1021/jp9624919
  6. Z. Zhou, J. He, L. S. Liao, M. Lu, X. M. Ding, X. Y. Hou, Y. M. Zhang, X. Q. He, and S. T. Lee, "Real-Time Observation of Temperature Rise and Thermal Breakdown Processes in Organic LEDs Using an IR Imaging and Analysis System," Adv. Mater., 12 [2] 265-69 (2000). https://doi.org/10.1002/(SICI)1521-4095(200002)12:4<265::AID-ADMA265>3.0.CO;2-L
  7. C. Leong and D. D. L. Chung, "Carbon Black Dispersions as Thermal Pastes That Surpass Solder in Providing High Thermal Contact Conductance," Carbon, 41 [13] 2459-69 (2003). https://doi.org/10.1016/S0008-6223(03)00247-1
  8. M. Speka, S. Mattei, M. Pilloz, and M. Ilie, "The Infrared Thermography Control of the Laser Welding of Amorphous Polymer," NDT and E Int., 41 [3] 178-83 (2008). https://doi.org/10.1016/j.ndteint.2007.10.005
  9. P. Jaeschke, D. Herzog, H. Haferkamp, C. Peters, and A. S. Herrmann, "Laser Transmission Welding of High-Performance Polymers and Reinforced Composites - A Fundamental Study," J. Reinf. Plast. Compos., 29 [20] 3083-94 (2010). https://doi.org/10.1177/0731684410365365
  10. M. Chen, G. Zak, and P. J. Bates, "Effect of Carbon Black on Light Transmission in Laser Welding of Thermoplastics," J. Mater. Process. Technol., 211 [1] 43-7 (2011). https://doi.org/10.1016/j.jmatprotec.2010.08.017
  11. F. Ribeiro, J. Macaira, R. Cruz, J. Gabriel, L. Andrade, and A. Mendres, "Laser Assisted Glass Frit Sealing of Dye-Sensitized Solar Cell," Sol. Energy Mater. Sol. Cells, 96 [1] 43-9 (2012). https://doi.org/10.1016/j.solmat.2011.09.009
  12. A. L. Stepanov, "Laser Annealing Induced Melting of Silver Nanoparticles in a Glass Matrix," Tech. Phys. Lett., 34 [12] 1014-7 (2008). https://doi.org/10.1134/S1063785008120079
  13. V. Koubassov, J. F. Laprise, F. Theberge, E. Foster, R. Sauerbrey, B. Muller, U. Glatzel, and S. L. Chin, "Ultrafast Laser-Induced Melting of Glass," Appl. Phys. A, 79 [3] 499-505 (2004). https://doi.org/10.1007/s00339-003-2474-0
  14. C. Zhang, R. Zuo, Q. Sun, Z. Hu, and J. Zhang, "Microwave Dielectric Properties and Low Temperature Sintering of The ZnO-$V_2O_5$ Doped $Ba_3Ti_2(Mg_{1/3}Nb_{2/3})_2Nb_4O_{21}$ Ceramics," Ceram. Int., 39 [5] 5675-79 (2013). https://doi.org/10.1016/j.ceramint.2012.12.084
  15. A. Y. Borisevich and P. K. Davies, "Effect of $V_2O_5$ Doping on the Sintering and Dielectric Properties of M-Phase $Li_{1+x-y}Nb_{1-x-3y}Ti_{x+4y}O_3$ Ceramics," J. Am. Ceram. Soc., 87 [6] 1047-52 (2004). https://doi.org/10.1111/j.1551-2916.2004.01047.x
  16. B. G. Aitken, J. P. Carberry, S. E. DeMartino, H. E. Hagy, L. A. Lamberson, J. M. Richard, R. Morena, J. F. Schroeder, A. Streltsov, and S. Widjaja "Glass Package that is Hermetically Sealed with a Frit and Method of Fabrication," U. S. Patent No. 7407423, 2008.
  17. A. El-Moneim, "DTA and IR Absorption Spectra of Vanadium Tellurite Glasses," Mat. Chem. Phys., 73 [1-2] 318-322 (2002). https://doi.org/10.1016/S0254-0584(01)00355-8
  18. S. Luo, W. Xu, X. Zhang, and L. HuO, "Structure and Low melting Property of Vanadate Tellurite Glass," Mat. Sci. Forum, 663-665 1229-33 (2011).
  19. R. W. Ricci, M. A. Ditzler, and L. P Nestor, "Discovering the Beer-Lambert Law," J. Chem. Educ., 71 [11] 983-85 (1994). https://doi.org/10.1021/ed071p983
  20. B. Acherjee, A. S. Kuar, S. Mitra, and D. Misra, "Effect of Carbon Black on Temperature Field and Weld Profile During Laser Transmission Welding of Polymers: A FEM Study," Opt. Laser Technol., 44 [3] 514-21 (2012). https://doi.org/10.1016/j.optlastec.2011.08.008

Cited by

  1. Additional Study on the Laser Sealing of Dye-Sensitized Solar-Cell-Panels Using V2O5 and TeO2 Containing Glass vol.52, pp.2, 2015, https://doi.org/10.4191/kcers.2015.52.2.103
  2. V2O5-P2O5-ZnO-Sb2O3 Glass Frit Materials with BaO and Al2O3 for Large-sized Dye-sensitized Solar Cell Sealing vol.52, pp.2, 2015, https://doi.org/10.4191/kcers.2015.52.2.114
  3. Content and Pre-Sintering Atmosphere on Adhesive Property of Glass Frit for Laser Sealing of OLED vol.29, pp.8, 2016, https://doi.org/10.4313/JKEM.2016.29.8.489
  4. P2O5-ZnO-SiO2-R2O Glass Frit Materials for Hermetic Sealing of Dye-Sensitized Solar Cells vol.54, pp.5, 2017, https://doi.org/10.4191/kcers.2017.54.5.04
  5. The Tuning Capability of CuO and Na2CO3 Dopant on Physical Properties for Laser Sealing Using Fiber Types of Sealant vol.10, pp.1, 2014, https://doi.org/10.3390/app10010353
  6. Processing technologies for sealing glasses and glass‐ceramics vol.11, pp.3, 2014, https://doi.org/10.1111/ijag.15107