• Title/Summary/Keyword: Large-set Classification

Search Result 183, Processing Time 0.025 seconds

러프집합과 계층적 분류구조를 이용한 데이터마이닝에서 분류지식발견

  • Lee, Chul-Heui;Seo, Seon-Hak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.202-209
    • /
    • 2002
  • This paper deals with simplification of classification rules for data mining and rule bases for control systems. Datamining that extracts useful information from such a large amount of data is one of important issues. There are various ways in classification methodologies for data mining such as the decision trees and neural networks, but the result should be explicit and understandable and the classification rules be short and clear. The rough sets theory is an effective technique in extracting knowledge from incomplete and inconsistent data and provides a good solution for classification and approximation by using various attributes effectively This paper investigates granularity of knowledge for reasoning of uncertain concopts by using rough set approximations and uses a hierarchical classification structure that is more effective technique for classification by applying core to upper level. The proposed classification methodology makes analysis of an information system eary and generates minimal classification rules.

Decision Analysis System for Job Guidance using Rough Set (러프집합을 통한 취업의사결정 분석시스템)

  • Lee, Heui-Tae;Park, In-Kyoo
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.387-394
    • /
    • 2013
  • Data mining is the process of discovering hidden, non-trivial patterns in large amounts of data records in order to be used very effectively for analysis and forecasting. Because hundreds of variables give rise to a high level of redundancy and dimensionality with time complexity, they are more likely to have spurious relationships, and even the weakest relationships will be highly significant by any statistical test. Hence cluster analysis is a main task of data mining and is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups. In this paper system implementation is of great significance, which defines a new definition based on information-theoretic entropy and analyse the analogue behaviors of objects at hand so as to address the measurement of uncertainties in the classification of categorical data. The sources were taken from a survey aimed to identify of job guidance from students in high school pyeongtaek. we show how variable precision information-entropy based rough set can be used to group student in each section. It is proved that the proposed method has the more exact classification than the conventional in attributes more than 10 and that is more effective in job guidance for students.

Traffic Classification based on Adjustable Convex-hull Support Vector Machines (조절할 수 있는 볼록한 덮개 서포트 벡터 머신에 기반을 둔 트래픽 분류 방법)

  • Yu, Zhibin;Choi, Yong-Do;Kil, Gi-Beom;Kim, Sung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.3
    • /
    • pp.67-76
    • /
    • 2012
  • Traffic classification plays an important role in traffic management. To traditional methods, P2P and encryption traffic may become a problem. Support Vector Machine (SVM) is a useful classification tool which is able to overcome the traditional bottleneck. The main disadvantage of SVM algorithms is that it's time-consuming to train large data set because of the quadratic programming (QP) problem. However, the useful support vectors are only a small part of the whole data. If we can discard the useless vectors before training, we are able to save time and keep accuracy. In this article, we discussed the feasibility to remove the useless vectors through a sequential method to accelerate training speed when dealing with large scale data.

Quantitative Approaches for Classification of the Patterns on Scientific and Technological Development (과학기술발전(科學技術發展)패턴의 추출(抽出)을 위한 계량적(計量的) 분석(分析))

  • Gwon, Cheol-Sin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.7 no.2
    • /
    • pp.27-41
    • /
    • 1981
  • The purpose of this study is to extract and classify the general patterns on scientific and technological development by quantitative approaches. Indicators used for this pattern classification amounted to a total of 39. what is more, these indicators were set up with the recent data for the first half of the 1970's mainly, and 141 nations were selected as the sample of the analysis. 7 aspects which prescribe the scentific and technological activities were established, and so 3 patterns of the S & T development were extrected by means of a "two-dimensional cross section" among them. (1) A pattern showing the trend of the exponential curve from the point over a certain level (in this study, it is defined as "Threshold Valued"). (2) A pattern in which elasticity of the exponential curve is gradually reduced from the point over the threshold value. (3) A pattern not showing any trend, but forming a large variance.

  • PDF

Hybrid Pattern Recognition Using a Combination of Different Features

  • Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.9-16
    • /
    • 2015
  • We propose a hybrid pattern recognition method that effectively combines two different features for improving data classification. We first extract the PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) features, both of which are widely used in pattern recognition, to construct a set of basic features, and then evaluate the separability of each basic feature. According to the results of evaluation, we select only the basic features that contain a large amount of discriminative information for construction of the combined features. The experimental results for the various data sets in the UCI machine learning repository show that using the proposed combined features give better recognition rates than when solely using the PCA or LDA features.

An Improved Deep Learning Method for Animal Images (동물 이미지를 위한 향상된 딥러닝 학습)

  • Wang, Guangxing;Shin, Seong-Yoon;Shin, Kwang-Weong;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.123-124
    • /
    • 2019
  • This paper proposes an improved deep learning method based on small data sets for animal image classification. Firstly, we use a CNN to build a training model for small data sets, and use data augmentation to expand the data samples of the training set. Secondly, using the pre-trained network on large-scale datasets, such as VGG16, the bottleneck features in the small dataset are extracted and to be stored in two NumPy files as new training datasets and test datasets. Finally, training a fully connected network with the new datasets. In this paper, we use Kaggle famous Dogs vs Cats dataset as the experimental dataset, which is a two-category classification dataset.

  • PDF

Video augmentation technique for human action recognition using genetic algorithm

  • Nida, Nudrat;Yousaf, Muhammad Haroon;Irtaza, Aun;Velastin, Sergio A.
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.327-338
    • /
    • 2022
  • Classification models for human action recognition require robust features and large training sets for good generalization. However, data augmentation methods are employed for imbalanced training sets to achieve higher accuracy. These samples generated using data augmentation only reflect existing samples within the training set, their feature representations are less diverse and hence, contribute to less precise classification. This paper presents new data augmentation and action representation approaches to grow training sets. The proposed approach is based on two fundamental concepts: virtual video generation for augmentation and representation of the action videos through robust features. Virtual videos are generated from the motion history templates of action videos, which are convolved using a convolutional neural network, to generate deep features. Furthermore, by observing an objective function of the genetic algorithm, the spatiotemporal features of different samples are combined, to generate the representations of the virtual videos and then classified through an extreme learning machine classifier on MuHAVi-Uncut, iXMAS, and IAVID-1 datasets.

Speech Emotion Recognition with SVM, KNN and DSVM

  • Hadhami Aouani ;Yassine Ben Ayed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.40-48
    • /
    • 2023
  • Speech Emotions recognition has become the active research theme in speech processing and in applications based on human-machine interaction. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: the first one is extracting only 13 Mel-frequency Cepstral Coefficient (MFCC) from emotional speech samples and the second one is applying features fusions between the three features: Zero Crossing Rate (ZCR), Teager Energy Operator (TEO), and Harmonic to Noise Rate (HNR) and MFCC features. Secondly, we use two types of classification techniques which are: the Support Vector Machines (SVM) and the k-Nearest Neighbor (k-NN) to show the performance between them. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning. A large set of experiments are conducted on Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of our experiments showed given good accuracy compared with the previous studies.

STag: Supernova Tagging and Classification

  • Davison, William;Parkinson, David;Tucker, Brad E.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.45.3-46
    • /
    • 2021
  • Supernovae classes have been defined phenomenologically, based on spectral features and time series data, since the specific details of the physics of the different explosions remain unrevealed. However, the number of these classes is increasing as objects with new features are observed, and the next generation of large-surveys will only bring more variety to our attention. We apply the machine learning technique of multi-label classification to the spectra of supernovae. By measuring the probabilities of specific features or 'tags' in the supernova spectra, we can compress the information from a specific object down to that suitable for a human or database scan, without the need to directly assign to a reductive 'class'. We use logistic regression to assign tag probabilities, and then a feed-forward neural network to filter the objects into the standard set of classes, based solely on the tag probabilities. We present STag, a software package that can compute these tag probabilities and make spectral classifications.

  • PDF

Temporal Associative Classification based on Calendar Patterns (캘린더 패턴 기반의 시간 연관적 분류 기법)

  • Lee Heon Gyu;Noh Gi Young;Seo Sungbo;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.6
    • /
    • pp.567-584
    • /
    • 2005
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from temporal data. Association rules and classification are applied to various applications which are the typical data mining problems. However, these approaches do not consider temporal attribute and have been pursued for discovering knowledge from static data although a large proportion of data contains temporal dimension. Also, data mining researches from temporal data treat problems for discovering knowledge from data stamped with time point and adding time constraint. Therefore, these do not consider temporal semantics and temporal relationships containing data. This paper suggests that temporal associative classification technique based on temporal class association rules. This temporal classification applies rules discovered by temporal class association rules which extends existing associative classification by containing temporal dimension for generating temporal classification rules. Therefore, this technique can discover more useful knowledge in compared with typical classification techniques.