• Title/Summary/Keyword: Large-scale model

Search Result 2,261, Processing Time 0.025 seconds

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

A biologically inspired model based on a multi-scale spatial representation for goal-directed navigation

  • Li, Weilong;Wu, Dewei;Du, Jia;Zhou, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1477-1491
    • /
    • 2017
  • Inspired by the multi-scale nature of hippocampal place cells, a biologically inspired model based on a multi-scale spatial representation for goal-directed navigation is proposed in order to achieve robotic spatial cognition and autonomous navigation. First, a map of the place cells is constructed in different scales, which is used for encoding the spatial environment. Then, the firing rate of the place cells in each layer is calculated by the Gaussian function as the input of the Q-learning process. The robot decides on its next direction for movement through several candidate actions according to the rules of action selection. After several training trials, the robot can accumulate experiential knowledge and thus learn an appropriate navigation policy to find its goal. The results in simulation show that, in contrast to the other two methods(G-Q, S-Q), the multi-scale model presented in this paper is not only in line with the multi-scale nature of place cells, but also has a faster learning potential to find the optimized path to the goal. Additionally, this method also has a good ability to complete the goal-directed navigation task in large space and in the environments with obstacles.

Estimating Heterogeneous Customer Arrivals to a Large Retail store : A Bayesian Poisson model perspective (대형할인매점의 요일별 고객 방문 수 분석 및 예측 : 베이지언 포아송 모델 응용을 중심으로)

  • Kim, Bumsoo;Lee, Joonkyum
    • Korean Management Science Review
    • /
    • v.32 no.2
    • /
    • pp.69-78
    • /
    • 2015
  • This paper considers a Bayesian Poisson model for multivariate count data using multiplicative rates. More specifically we compose the parameter for overall arrival rates by the product of two parameters, a common effect and an individual effect. The common effect is composed of autoregressive evolution of the parameter, which allows for analysis on seasonal effects on all multivariate time series. In addition, analysis on individual effects allows the researcher to differentiate the time series by whatevercharacterization of their choice. This type of model allows the researcher to specifically analyze two different forms of effects separately and produce a more robust result. We illustrate a simple MCMC generation combined with a Gibbs sampler step in estimating the posterior joint distribution of all parameters in the model. On the whole, the model presented in this study is an intuitive model which may handle complicated problems, and we highlight the properties and possible applications of the model with an example, analyzing real time series data involving customer arrivals to a large retail store.

Deep-beams with indirect supports: numerical modelling and experimental assessment

  • Pimentel, Mario;Cachim, Paulo;Figueiras, Joaquim
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.117-134
    • /
    • 2008
  • An experimental and numerical research was conducted to gain a deeper insight on the structural behaviour of deep-beams with indirect supports and to assess the size effects in the ultimate state behaviour. The experimental campaign focused on the influence of the reinforcement tie distribution height on the compression check of the support region and on the benefits of using unbonded prestressing steel. Three reduced scale specimens were tested and used to validate the results obtained with a nonlinear finite element model. As a good agreement could be found between the numerical and the experimental results, the numerical model was then further used to perform simulations in large scale deep-beams, with dimensions similar to the ones to be adopted in a practical case. Two sources of size effects were identified from the simulation results. Both sources are related to the concrete quasi-brittle behaviour and are responsible for increasing failure brittleness with increasing structural size. While in the laboratory models failure occurred both in the experimental tests as well as in the numerical simulations after reinforcement yielding, the numerically analysed large scale models exhibited shear failures with reinforcement still operating in the elastic range.

Experimental and numerical studies on VIV characteristics of π-shaped composite deck of a cable-stayed bridge with 650 m main span

  • Wei Lei;Qi Wang;Haili Liao;Chengkai Shao
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.93-107
    • /
    • 2024
  • A π-shaped composite deck in the form of an open section is a type of blunt body that is highly susceptible to wind loads. To investigate its vortex-induced vibration (VIV) performance, a large-scale (1/20) section model of a cable-stayed bridge with a main span of 650 m was tested in a wind tunnel. The vibration suppression mechanism of the countermeasures was analyzed using computational fluid dynamic. Experimental results demonstrate that the vertical and torsional VIVs of the original section can be suppressed by combining guide plates with a tilt angle of 35° and bottom central stabilizing plates as aerodynamic countermeasures. Numerical results indicate that the large-scale vortex under the deck separates into smaller vortices, resulting in the disappearance of the von Kármán vortex street in the wake zone because the countermeasures effectively suppress the VIVs. Furthermore, a full-bridge aeroelastic model with a scale of 1/100 was constructed and tested to evaluate the wind resistance performance and validate the effectiveness of the proposed countermeasures.

Multiple Source Modeling of Low-Reynolds-Number Dissipation Rate Equation with Aids of DNS Data

  • Park, Young-Don;Shin, Jong-Keun;Chun, Kun-Go
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.392-402
    • /
    • 2001
  • The paper reports a multiple source modeling of low-Reynolds-number dissipation rate equation with aids of DNS data. The key features of the model are to satisfy the wall limiting conditions of the individual source terms in the exact dissipation rate equation using the wall damping functions. The wall damping functions are formulated in term of dimensionless dissipation length scale ι(sup)+(sub)D(≡ι(sub)D($\upsilon$$\xi$)(sup)1/4/$\upsilon$) and the invariants of small and large scale turbulence anisotropy tensors. $\alpha$(sub)ij(=$\mu$(sub)i$\mu$(sub)j/$\kappa$-2$\delta$(sub)ij/3) and e(sub)ij(=$\xi$(sub)ij/$\xi$-2$\delta$(sub)ij/3). The model constants are optimized with aids of DNS data in a plane channel flow. Adopting the dissipation length scale as a parameter of damping function, the applicabilities of $\kappa$-$\xi$ model are extended to the turbulent flow calculation of complex flow passages.

  • PDF

Environmental Noise Prediction using Scale Model: A Measurement Methodology

  • Kim, Tae-Min;Han, Jae-Hyun;Kim, Jeung-Tae
    • International Journal of Railway
    • /
    • v.4 no.2
    • /
    • pp.42-49
    • /
    • 2011
  • Today, rolling stock has become a fast and convenient mode of transportation and has witnessed increased demand. But the speed improvement has resulted in increased aerodynamic noise and therefore residential districts near the railroad tracks are exposed to ever increasing noise level. A study on methodologies for measuring and appraising rolling stock's environmental noise has therefore become an important area of endeavor. In the case of the environmental noise, there are no changes in tone so prediction can be made by reducing areas around the railway. The present study explores estimation of the noise around the railway using scale model, and the source of the noise has been investigated as well. The scale model of rolling stock will have to be able to measure high frequency noise and it is required to be generated in a short amount of time. Since popping a balloon or firing a gun fits this requirement the present study analyzed the characteristics of these two different noise sources. Measurement was made in a large vacant lot and the reflection due to the ground was also examined. The method proposed here can be used in the future for predicting the environmental noise of railway vehicles.

Dependence of Weibull parameters on the diameter and the internal defects of Tyranno ZMI fiber in the strength analysis

  • Morimoto, Tetsuya;Yamamoto, Koji;Ogihara, Shinji
    • Advanced Composite Materials
    • /
    • v.16 no.3
    • /
    • pp.245-258
    • /
    • 2007
  • The single-modal Weibull model has been assessed on Tyranno ZMI Si-Zr-C-O fiber if a set of shape and scale parameters accurately reproduced the effect of the size of the diameter on strength. The tensile data of a single fiber have been divided into two expedient groups as 'small diameter' group and 'large diameter' group in deriving the parameters, which should be consistent if the Weibull model accurately reproduced the size effect. However, the derived Weibull parameters were inconsistent between the two groups. Thereby the authors have concluded that the parameters of the single-modal Weibull model are dependent on the fiber diameter, so that the model is inadequate to reproduce the strength size effect. On the other hand, Weibull parameters were found consistent between the two groups by excluding the data of 'large mirror zone' sample, which was defined as the sample around 10% mirror zone area of the fracture surface. What is more, the exclusion reduced the strength variance more drastically in the 'large diameter' group than in the 'small diameter' group, even though the 'large mirror zone' samples were found identical in the percentage between the two groups. The authors therefore conclude that diameter limitation to the 'small diameter' group level can lead to drastically less distributed strength values than the estimated strength through the Weibull scaling on the present Tyranno ZMI Si-Zr-C-O fiber.

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF