DOI QR코드

DOI QR Code

Experimental and numerical studies on VIV characteristics of π-shaped composite deck of a cable-stayed bridge with 650 m main span

  • Wei Lei (School of Civil Engineering, Southwest Jiaotong University) ;
  • Qi Wang (School of Civil Engineering, Southwest Jiaotong University) ;
  • Haili Liao (School of Civil Engineering, Southwest Jiaotong University) ;
  • Chengkai Shao (School of Civil Engineering, Southwest Jiaotong University)
  • Received : 2023.07.09
  • Accepted : 2024.01.30
  • Published : 2024.02.25

Abstract

A π-shaped composite deck in the form of an open section is a type of blunt body that is highly susceptible to wind loads. To investigate its vortex-induced vibration (VIV) performance, a large-scale (1/20) section model of a cable-stayed bridge with a main span of 650 m was tested in a wind tunnel. The vibration suppression mechanism of the countermeasures was analyzed using computational fluid dynamic. Experimental results demonstrate that the vertical and torsional VIVs of the original section can be suppressed by combining guide plates with a tilt angle of 35° and bottom central stabilizing plates as aerodynamic countermeasures. Numerical results indicate that the large-scale vortex under the deck separates into smaller vortices, resulting in the disappearance of the von Kármán vortex street in the wake zone because the countermeasures effectively suppress the VIVs. Furthermore, a full-bridge aeroelastic model with a scale of 1/100 was constructed and tested to evaluate the wind resistance performance and validate the effectiveness of the proposed countermeasures.

Keywords

Acknowledgement

The work was supported by the National Natural Science Foundation of China (Grant Nos. 51678508 and 52378537). We would like to appreciate the reviewers for their constructive suggestions, which helped us to improve our manuscript.

References

  1. Bai, H., Ji, N., Xu, G. and Li, J. (2020), "An alternative aerodynamic mitigation measure for improving bridge flutter and vortex induced vibration (VIV) stability: Sealed traffic barrier", J. Wind eng. Indus. Aerodyn., 206, 104302. https://doi.org/10.1016/j.jweia.2020.104302.
  2. Bai, H., Li, R., Xu, G. and Kareem, A. (2021), "Aerodynamic performance of pi-shaped composite deck cable-stayed bridges including VIV mitigation measures", J. Wind eng. Ind.. Aerod., 208, 104451. https://doi.org/10.1016/j.jweia.2020.104451.
  3. Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007), "CFD simulation of the atmospheric boundary layer: Wall function problems", Atmos. Environ., 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019.
  4. Daito, Y., Matsumoto, M. and Araki, K. (2002), "Torsional flutter mechanism of two-edge girders for long-span cable-stayed bridge", J. Wind Eng. Ind. Aerod., 90(12-15), 2127-2141. https://doi.org/10.1016/S0167-6105(02)00329-X.
  5. Daniels, S.J., Castro, I.P. and Xie, Z.T. (2016), "Numerical analysis of freestream turbulence effects on the vortex-induced vibrations of a rectangular cylinder", J. Wind Eng. Ind. Aerod., 153, 13-25. https://doi.org/10.1016/j.jweia.2016.03.007.
  6. Dong, J., Huang, L., Liao, H. and Wang, Q. (2021), "Investigation on suppressing vortex-induced vibrations of the rectangular steel box girder for railway cable-stayed bridges by installing wind fairings", J. Wind eng. Ind. Aerod., 219, 104821. https://doi.org/10.1016/j.jweia.2021.104821.
  7. Fu, X., Jiang, Y., Li, H.N., Li, J.X., Xie, W.P., Yang, L.D. and Zhang, J. (2021), "Vortex-induced vibration and countermeasure of a tubular transmission tower", Int. J. Struct. Stab. Dyn., 21(12), 2150163. https://doi.org/10.1142/S0219455421501637.
  8. Fujino, Y. and Siringoringo, D. (2013), "Vibration mechanisms and controls of long-span bridges: A review", Struct. Eng. Int., 23(3), 248-268. https://doi.org/10.2749/101686613X13439149156886.
  9. Gao, D., Deng, Z., Yang, W. and Chen, W. (2021), "Review of the excitation mechanism and aerodynamic flow control of vortex-induced vibration of the main girder for long-span bridges: A vortex-dynamics approach", J. Fluids Struct., 105, 103348. https://doi.org/10.1016/j.jfluidstructs.2021.103348.
  10. Ge, Y.J., Zhao, L. and Cao, J.X. (2022), "Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge", J. Wind Eng. Ind. Aerod., 220, 104866. https://doi.org/10.1016/j.jweia.2021.104866.
  11. He, H.X. and Li, J.W. (2015), "Study on the effect and mechanism of aerodynamic measures for the vortex-induced vibration of separate pairs of box girders in cable-stayed bridges", Shock Vib., 2015. https://doi.org/10.1155/2015/792957.
  12. Hu, C.X., Zhao, L. and Ge, Y.J. (2019), "Mechanism of suppression of vortex-induced vibrations of a streamlined closed-box girder using additional small-scale components", J. Wind Eng. Ind. Aerod., 189, 314-331. https://doi.org/10.1016/j.jweia.2019.04.015.
  13. Hwang, Y.C., Kim, S. and Kim, H.K. (2020), "Cause investigation of high-mode vortex-induced vibration in a long-span suspension bridge", Struct. Infrastruct. Eng., 16(1), 84-93. https://doi.org/10.1080/15732479.2019.1604771.
  14. JTG/T 3360-01-2018 (2018), Wind-Resistant Design Specification for Highway Bridges, Ministry of Transport of the PRC, Beijing, China.
  15. Kubo, Y., Kimura, K., Sadashima, K., Okamoto, Y., Yamaguchi, E. and Kato, K. (2002), "Aerodynamic performance of improved shallow pi shape bridge deck", J. Wind Eng. Ind.. Aerod., 90(12-15), 2113-2125. https://doi.org/10.1016/S0167-6105(02)00328-8.
  16. Kubo, Y., Sadashima, K., Yamaguchi, E., Kato, K., Okamoto, Y. and Koga, T. (2001), "Improvement of aeroelastic instability of shallow pi section", J. Wind Eng. Ind. Aerod., 89(14-15), 1445-1457. https://doi.org/10.1016/S0167-6105(01)00151-9.
  17. Laima, S., Li, H., Chen, W. and Ou, J. (2018), "Effects of attachments on aerodynamic characteristics and vortex-induced vibration of twin-box girder", J. Fluids struct., 77, 115-133. https://doi.org/10.1016/j.jfluidstructs.2017.12.005.
  18. Larsen, A., Esdahl, S., Andersen, J.E. and Vejrum, T. (2000), "Storeb ae lt suspension bridge - vortex shedding excitation and mitigation by guide vanes", J. Wind Eng. Ind. Aerod., 88(2-3), 283-296. https://doi.org/10.1016/S0167-6105(00)00054-4.
  19. Lee, H., Moon, J., Chun, N. and Lee, H.E. (2017), "Effect of beam slope on the static aerodynamic response of edge-girder bridge-deck", Wind Struct., 25(2), 157-176. https://doi.org/10.12989/was.2017.25.2.157.
  20. Li, J.W., Ma, Z.X., Qiao, X.R., Hao, J.M., Zhao, G.H. and Wang, F. (2022), "Aerodynamic nonlinear energy evolution characteristics of vertical vortex-induced vibration of open bridge girder", Int. J. Struct. Stab. Dyn., 22(14), 2250165. https://doi.org/10.1142/S0219455422501656.
  21. Li, K., Qian, G., Ge, Y., Zhao, L. and Di, J. (2019), "Control effect and mechanism investigation on the horizontal flow-isolating plate for pi shaped bridge decks' VIV stability", Wind Struct., 28(2), 99-110. https://doi.org/10.12989/was.2019.28.2.099.
  22. Li, Y., Li, C., Wang, F. and Li, J.W. ( (2021), "Study on the mechanism of the vortex-induced vibration of a bluff double-side box section", Steel Compos. Struct., 41(2), 293-315. https://doi.org/10.12989/scs.2021.41.2.293.
  23. Liu, S., Zhao, L., Fang, G., Hu, C. and Ge, Y. (2021), "Investigation on aerodynamic force nonlinear evolution for a central-slotted box girder under torsional vortex-induced vibration", J. Fluids Struct., 106, 103380. https://doi.org/10.1016/j.jfluidstructs.2021.103380.
  24. Ma, C., Li, Z., Meng, F., Liao, H. and Wang, J. (2021), "Wind-induced vibrations and suppression measures of the hong kongzhuhai-macao bridge", Wind Struct., 32(3), 179-191. https://doi.org/10.12989/was.2021.32.3.179.
  25. Murakami, T., Takeda, K., Takao, M. and Yui, R. (2002), "Investigation on aerodynamic and structural countermeasures for cable-stayed bridge with 2-edge i-shaped girder", J. Wind Eng. Ind. Aerod., 90(12-15), 2143-2151. https://doi.org/10.1016/S0167-6105(02)00330-6.
  26. Nagao, F., Utsunomiya, H., Yoshioka, E., Ikeuchi, A. and Kobayashi, H. (1997), "Effects of handrails on separated shear flow and vortex-induced oscillation", J. Wind Eng. Ind. Aerod., 71, 819-827. https://doi.org/10.1016/S0167-6105(97)00208-0.
  27. Pan, Z.Y., Cui, W.C. and Miao, Q.M. (2007), "Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using rans code", J. Fluids Struct., 23(1), 23-37. https://doi.org/10.1016/j.jfluidstructs.2006.07.007.
  28. Sakai, Y., Ogawa, K., Shimodoi, H. and Saitoh, T. (1993), "An experimental-study on aerodynamic improvements for edge girder bridges", J. Wind Eng. Ind. Aerod., 49(1-3), 459-466. https://doi.org/10.1016/0167-6105(93)90040-U.
  29. Sarwar, M.W. and Ishihara, T. (2010), "Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures", J. Wind Eng. Ind. Aerod., 98(12), 701-711. https://doi.org/10.1016/j.jweia.2010.06.001.
  30. Sun, Y.G., Li, M.S. and Liao, H.L. (2013), "Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests", Wind Struct., 17(6), 565-587. https://doi.org/10.12989/WAS.2013.17.6.565.
  31. Wang, Z.X. and Zhang, Z.T. (2021), "VIV properties of pi-shaped bridge sectional model: Dependence on torsional-bending frequency ratio", J. Bridge Eng., 26(6), 06021003. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001720.
  32. Wu, X.D., Ge, F. and Hong, Y.S. (2012), "A review of recent studies on vortex-induced vibrations of long slender cylinders", J. Fluids struct., 28, 292-308. https://doi.org/10.1016/j.jfluidstructs.2011.11.010.
  33. Xu, K., Ge, Y., Zhao, L. and Du, X. (2018), "Calculating vortex-induced vibration of bridge decks at different mass-damping conditions", J. Bridge Eng., 23(3), 04017149. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001205.
  34. Yang, Y., Kim, S., Hwang, Y. and Kim, H.K. (2021), "Experimental study on suppression of vortex-induced vibration of bridge deck using vertical stabilizer plates", J. Wind Eng. Ind. Aerod., 210, 104512. https://doi.org/10.1016/j.jweia.2020.104512.
  35. Yang, Y., Zhou, R., Ge, Y. and Zhang, L. (2016), "Experimental studies on VIV performance and countermeasures for twin-box girder bridges with various slot width ratios", J. Fluids Struct., 66, 476-489. https://doi.org/10.1016/j.jfluidstructs.2016.08.010.
  36. Yu, D.H. and Kareem, A. (1998), "Parametric study of flow around rectangular prisms using les", J. Wind Eng. Ind. Aerod., 77-78, 653-662. https://doi.org/10.1016/S0167-6105(98)00180-9.
  37. Zhang, M.J., Xu, F.Y. and Oiseth, O. (2020a), "Aerodynamic damping models for vortex-induced vibration of a rectangular 4:1 cylinder: Comparison of modeling schemes", J. Wind Eng. Ind. Aerod., 205, 104321. https://doi.org/10.1016/j.jweia.2020.104321.
  38. Zhang, T., Sun, Y., Li, M. and Yang, X. (2020b), "Experimental and numerical studies on the vortex-induced vibration of two-box edge girder for cable-stayed bridges", J. Wind Eng. Ind. Aerod., 206, 104336. https://doi.org/10.1016/j.jweia.2020.104336.
  39. Zhou, R., Ge, Y., Liu, Q., Yang, Y. and Zhang, L. (2021), "Experimental and numerical studies of wind-resistance performance of twin-box girder bridges with various grid plates", Thin-Wall. Struct., 166, 108088. https://doi.org/10.1016/j.tws.2021.108088.
  40. Zhou, R., Ge, Y., Yang, Y., Du, Y. and Zhang, L. (2018), "Wind-induced nonlinear behaviors of twin-box girder bridges with various aerodynamic shapes", Nonlinear Dyn., 94(2), 1095-1115. https://doi.org/10.1007/s11071-018-4411-y.
  41. Zhou, R., Yang, Y., Ge, Y., Mendis, P. and Mohotti, D. (2015a), "Practical countermeasures for the aerodynamic performance of long-span cable-stayed bridges with open decks", Wind Struct., 21(2), 223-239. https://doi.org/10.12989/was.2015.21.2.223.
  42. Zhou, Z., Yang, T., Ding, Q. and Ge, Y. (2015b), "Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures", Wind Struct., 20(5), 643-660. https://doi.org/10.12989/WAS.2015.20.5.643.