• Title/Summary/Keyword: wind tunnel tests

Search Result 436, Processing Time 0.026 seconds

Crosswind effects on high-sided road vehicles with and without movement

  • Wang, Bin;Xu, You-Lin;Zhu, Le-Dong;Li, Yong-Le
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.155-180
    • /
    • 2014
  • The safety of road vehicles on the ground in crosswind has been investigated for many years. One of the most important fundamentals in the safety analysis is aerodynamic characteristics of a vehicle in crosswind. The most common way to study the aerodynamic characteristics of a vehicle in crosswind is wind tunnel tests to measure the aerodynamic coefficients and/or pressure coefficients of the vehicle. Due to the complexity of wind tunnel test equipment and procedure, the features of flow field around the vehicle are seldom explored in a wind tunnel, particularly for the vehicle moving on the ground. As a complementary to wind tunnel tests, the numerical method using computational fluid dynamics (CFD) can be employed as an effective tool to explore the aerodynamic characteristics of as well as flow features around the vehicle. This study explores crosswind effects on a high-sided lorry on the ground with and without movement through CFD simulations together with wind tunnel tests. Firstly, the aerodynamic forces on a stationary lorry model are measured in a wind tunnel, and the results are compared with the previous measurement results. The CFD with unsteady RANS method is then employed to simulate wind flow around and wind pressures on the stationary lorry. The numerical aerodynamic forces are compared with the wind tunnel test results. Furthermore, the same CFD method is extended to investigate the moving vehicle on the ground in crosswind. The results show that the CFD results match with wind tunnel test results and the current way using aerodynamic coefficients from a stationary vehicle in crosswind is acceptable. The CFD simulation can provide more insights on flow field and pressure distribution which are difficult to be obtained by wind tunnel tests.

Acrosswind aeroelastic response of square tall buildings: a semi-analytical approach based of wind tunnel tests on rigid models

  • Venanzi, I.;Materazzi, A.L.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.495-508
    • /
    • 2012
  • The present paper is focused on the prediction of the acrosswind aeroelastic response of square tall buildings. In particular, a semi-analytical procedure is proposed based on the assumption that square tall buildings, for reduced velocities corresponding to operational conditions, do not experience vortex shedding resonance or galloping and fall in the range of positive aerodynamic damping. Under these conditions, aeroelastic wind tunnel tests can be unnecessary and the response can be correctly evaluated using wind tunnel tests on rigid models and analytical modeling of the aerodynamic damping. The proposed procedure consists of two phases. First, simultaneous measurements of the pressure time histories are carried out in the wind tunnel on rigid models, in order to obtain the aerodynamic forces. Then, aeroelastic forces are analytically evaluated and the structural response is computed through direct integration of the equations of motion considering the contribution of both the aerodynamic and aeroelastic forces. The procedure, which gives a conservative estimate of the aeroelastic response, has the advantage that aeroelastic tests are avoided, at least in the preliminary design phase.

Wind tunnel tests on wind loads acting on steel tubular transmission towers under skewed wind

  • YANG, Fengli;NIU, Huawei
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.93-108
    • /
    • 2022
  • Steel tubular towers are commonly used in UHV and long crossing transmission lines. By considering effects of the model scale, the solidity ratio and the ratio of the mean width to the mean height, wind tunnel tests under different wind speeds on twenty tubular steel tower body models and twenty-six tubular steel cross-arm models were completed. Drag coefficients and shielding factors of the experimental tower body models and cross-arm models in wind directional axis for typical skewed angles were obtained. The influence of the lift forces on the skewed wind load factors of tubular steel tower bodies was evaluated. The skewed wind load factors, the wind load distribution factors in transversal and longitudinal direction were calculated for the tubular tower body models and cross-arm models, respectively. Fitting expressions for the skewed wind load factors of tubular steel bodies and cross-arms were determined through nonlinear fitting analysis. Parameters for skewed wind loads determined by wind tunnel tests were compared with the regulations in applicable standards. Suggestions on the drag coefficients, the skewed wind load factors and the wind load distribution factors were proposed for tubular steel transmission towers.

The nose-up effect in twin-box bridge deck flutter: Experimental observations and theoretical model

  • Ronne, Maja;Larsen, Allan;Walther, Jens H.
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.293-308
    • /
    • 2021
  • For the past three decades a significant amount of research has been conducted on bridge flutter. Wind tunnel tests for a 2000 m class twin-box suspension bridge have revealed that a twin-box deck carrying 4 m tall 50% open area ratio wind screens at the deck edges achieved higher critical wind speeds for onset of flutter than a similar deck without wind screens. A result at odds with the well-known behavior for the mono-box deck. The wind tunnel tests also revealed that the critical flutter wind speed increased if the bridge deck assumed a nose-up twist relative to horizontal when exposed to high wind speeds - a phenomenon termed the "nose-up" effect. Static wind tunnel tests of this twin-box cross section revealed a positive moment coefficient at 0° angle of attack as well as a positive moment slope, ensuring that the elastically supported deck would always meet the mean wind flow at ever increasing mean angles of attack for increasing wind speeds. The aerodynamic action of the wind screens on the twin-box bridge girder is believed to create the observed nose-up aerodynamic moment at 0° angle of attack. The present paper reviews the findings of the wind tunnel tests with a view to gain physical insight into the "nose-up" effect and to establish a theoretical model based on numerical simulations allowing flutter predictions for the twin-box bridge girder.

Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests

  • Sun, Yanguo;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.565-587
    • /
    • 2013
  • Obvious vortex induced vibration (VIV) was observed during section model wind tunnel tests for a single main cable suspension bridge. An optimized section configuration was found for mitigating excessive amplitude of vibration which is much larger than the one prescribed by Chinese code. In order to verify the maximum amplitude of VIV for optimized girder, a full bridge aeroelastic model wind tunnel test was carried out. The differences between section and full aeroelastic model testing results were discussed. The maximum amplitude derived from section model tests was first interpreted into prototype with a linear VIV approach by considering partial or imperfect correlation of vortex-induced aerodynamic force along span based on Scanlan's semi-empirical linear model. A good consistency between section model and full bridge model was found only by considering the correlation of vortex-induced force along span.

Wind tunnel test of wind turbine in United States and Europe (미국과 유럽의 풍력터빈 풍동실험)

  • Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.42-46
    • /
    • 2005
  • In spite of fast growing of prediction codes, there is still not negligible uncertainty in their results. This uncertainty affects on the turbine structural design and power production prediction. With the growing size of wind turbine, reducing this uncertainty is becoming one of critical issues for high performance and efficient wind turbine design. In this respect, there are international efforts to evaluate and tune prediction codes of wind turbine. As the reference data for this purpose, field test data is not appropriate because of its uncontrollable wind characteristics and its inherent uncertainty. Wind tunnel can provide controllable wind. For this reason, NREL has done the full scale test of the 10m turbine at NASA-Ames. With this reference data, a blind comparison has been done with participation of 18 organizations with 19 modeling tools. The results were not favorable. In Europe, a similar project is going on. Nine organizations from five countries are participating in the MEXICO project to do full scale wind tunnel tests and calculation with prediction codes. In this study. these two projects were reviewed in respect of wind tunnel test and its contribution. As a conclusion, it is suggested that scale model wind tunnel tests can be a complementary tool to calculation codes which were evaluated worse than expected.

  • PDF

Wind-Resistant Safety Reviews of Cable-Stayed Bridge by Wind Tunnel Tests (풍동실험을 통한 사장교의 내풍 안전성 검토)

  • Huh, Taik-Nyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.637-644
    • /
    • 2020
  • Because suicide accidents sometimes were happened in grand bridges over rivers or sea water recently, it will be necessary that prevention measures be made preparation in advance from now on. Additional safety facilities must be needed in addition to existing safety facilities in such a way as this prevention measure. In order to make cable-stayed bridge safe on wind for additional safety facilities, main girder models with added safety facilities for wind-tunnel tests was made, and wind tunnel experiments was carried out to measure aerodynamic force coefficients. Also, wind-resistant analyses of 3D cable-stayed bridge were performed on the basis of wind-tunnel test results. From the wind experiments, force coefficients of main girder with added safety facilities were assessed, and it is known that there are little possibility of galloping and rotation of steel main girder. Finally, from the wind resistant analyses, it was concluded that wind-resistant safety of cable-stayed bridge was secured on wind speed 60.6m/sec.

Aerodynamic stability of stay cables incorporated with lamps: a case study

  • Li, S.Y.;Chen, Z.Q.;Dong, G.C.;Luo, J.H.
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.83-101
    • /
    • 2014
  • Lamps installed on stay cables of cable-stayed bridges may alter the configuration of circular cross section of the cables and therefore result in aerodynamically unstable cable vibrations. The background of this study is a preliminary design of lamp installation on the cable-stayed He-dong Bridge in Guangzhou, China. Force measurements and dynamic response measurements wind tunnel tests were carried out to validate the possibility of cable galloping vibrations. It is observed that galloping will occur and the critical wind velocity is far less than the design wind velocity at Guangzhou City stipulated in Chinese Code. Numerical simulations utilizing software ANSYS CFX were subsequently performed and almost the same results as the wind tunnel tests were obtained. Moreover, the pressure and velocity contours around cable-lamp model obtained from numerical simulations indicated that the upstream steel wire in the preliminary design is the key factor for the onset of the galloping vibrations. A modification for the preliminary design of lamp installation, which suggests to remove the two parallel steel wires, is proposed, and it effectiveness is validated in further wind tunnel tests.

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

Effects of frequency ratio on bridge aerodynamics determined by free-decay sectional model tests

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • A series of wind tunnel free-decay sectional model dynamic tests were conducted to examine the effects of torsional-to-vertical natural frequency ratio of 2DOF bridge dynamic systems on the aerodynamic and dynamic properties of bridge decks. The natural frequency ratios tested were around 2.2:1 and 1.2:1 respectively, with the fundamental vertical natural frequency of the system held constant for all the tests. Three 2.9 m long twin-deck bridge sectional models, with a zero, 16% (intermediate gap) and 35% (large gap) gap-to-width ratio, respectively, were tested to determine whether the effects of frequency ratio are dependent on bridge deck cross-section shapes. The results of wind tunnel tests suggest that for the model with a zero gap-width, a model to approximate a thin flat plate, the flutter derivatives, and consequently the aerodynamic forces, are relatively independent of the torsional-to-vertical frequency ratio for a relatively large range of reduced wind velocities, while for the models with an intermediate gap-width (around 16%) and a large gap-width (around 35%), some of the flutter derivatives, and therefore the aerodynamic forces, are evidently dependent on the frequency ratio for most of the tested reduced velocities. A comparison of the modal damping ratios also suggests that the torsional damping ratio is much more sensitive to the frequency ratio, especially for the two models with nonzero gap (16% and 35% gap-width). The test results clearly show that the effects of the frequency ratio on the flutter derivatives and the aerodynamic forces were dependent on the aerodynamic cross-section shape of the bridge deck.