미래의 주가를 예측하기 위한 시도는 과거부터 꾸준히 연구되어왔다. 그러나 일반적인 시계열 데이터와 달리 금융 시계열 비정상성(non-stationarity)과 장기 의존성(long-term dependency), 비선형성(non-linearity) 등 예측을 하는 것에 있어서 여러 가지 방해 요인이 존재한다. 또한, 광범위한 데이터의 변수는 기존에 사람이 직접 선택하는 것에 한계가 있으며 모델이 변수를 자동으로 잘 추출할 수 있도록 하여야 한다. 본 논문에서는 비정상성 데이터를 정규화할 수 있는 슬라이딩 타임스텝 정규화(sliding time step normalization) 방법과 LSTM 형태의 오토인코더(AutoEncoder)를 사용하여 모든 변수로부터 압축된 변수로 미래 주가를 예측하는 방법, 기간을 나누어 전이 학습을 하는 이동 전이 학습(moving transfer learning)을 제안한다. 또한, 실험을 통하여 100개의 주요 금융 변수들만을 사용하는 것보다 뉴럴 네트워크를 통해서 가능한 많은 변수를 사용하였을 때 성능이 우수함을 보이며, 슬라이딩 타임스텝 정규화 방법을 사용하여 모든 구간에서 데이터의 비정상성에 대해 정규화를 수행함으로써 성능 향상에 효과적임을 보인다. 이동 전이 학습 방법은 스텝 별 테스트 구간에서 모델의 성능을 평가하고 전이학습을 함으로써 긴 테스트 구간에서 성능 향상에 효과적임을 보인다.
Not only emissions, but also atmospheric circulation is a key factor that affects local particulate matters (PM) concentrations in Korea through ventilation effects and transboundary transports. As part of the atmospheric circulation, air stagnation especially adversely affects local air quality due to weak ventilation. This study investigates the large-scale circulation related to air stagnation over Korea during winter and projects the climate change impacts on atmospheric patterns, using observed PM data, reanalysis and regional climate projections from HadGEM3-RA with Modified Korea Particulate matter Index. Results show that the stagnation affects the PM concentration, accompanied by pressure ridge at upper troposphere and weaken zonal pressure gradient at lower troposphere. Downscaling using HadGEM3-RA is found to yield Added-Value in the simulated low tropospheric winds. For projection of future stagnation, SSP5-8.5 and SSP1-2.6 (high and low emission) scenarios are used here. It has been found that the stagnation condition occurs more frequently by 11% under SSP5-8.5 and by 5% under SSP1-2.6 than in present-day climate and is most affected by changes in surface wind speed. The increase in the stagnation conditions is related to anticyclonic circulation anomaly at upper troposphere and weaken meridional pressure gradient at lower troposphere. Considering that the present East Asian winter monsoon is mainly affected by change in zonal pressure gradient, it is worth paying attention to this change in the meridional gradient. Our results suggest that future warming condition increase the frequency of air stagnation over Korea during winter with response of atmospheric circulation and its nonlinearity.
최근 동아시아 지역에서 인위적 배출량의 감소에도 불구하고, 봄철에 한국에서는 잦은 연무 사례가 발생하고 있다. 북동 태평양에서 자주 발생하는 대기 블로킹은 지구 규모 대기 변동과 동아시아 지역의 서풍 기류를 정체시키기도 한다. 2019년 3월 동아시아 지역의 온난하고 정체적인 종관 기상 특성이 알래스카 대기 블로킹이 발생한 6-7일 후에 일어나고 있었다. 특히, 2019년 3월 18-24일에 발생한 알래스카 대기 블로킹은 3월 25-28일 동안 한국에서 일평균 미세먼지(particulate matter; PM10) 질량농도가 50 ㎍ m-3을 넘는 고농도 PM10 연무 사례가 발생하는 데 영향을 미치고 있었다. 한편, WRF-Chem 모델을 활용하여 한국의 고농도 PM10 연무 사례에 대한 인위적 배출의 장거리 수송 기여도는 30-40%를 나타내고 있었다. PM10 에어로졸 구성 성분인 황산염, 질산염, 암모늄, 블랙 카본, 유기 탄소, 기타 무기물의 장거리 수송 기여도는 각각 10-15, 20-25, 5-10, 5-10, 5-10, 15-20%를 나타내었다. 질소 산화물이 온난하고 정체적인 대기에서 암모늄과의 광화학 반응으로 형성된 질산암모늄은 한국의 고농도 PM10 연무 사례에 대한 장거리 수송 기여도가 PM10 에어로졸 중 가장 큰 비중을 나타내고 있었다.
가계동향조사는 가구에 대한 가계수지 실태를 파악하여 국민 소득·소비 수준과 그 변화의 측정 및 분석 등을 목적으로 하는 통계청의 대표적인 조사이다. 최근 여러 기관들에서 2017년과 2018년의 가계동향 지출부문에서 발생한 시계열 단절에 대한 문제를 인식하고, 이 기간에 대한 시계열 연계를 위한 관련 연구를 진행하고 있다. 본 연구에서는 2016년까지의 가계동향 조사 시계열 특성을 파악하고, 이를 반영하여 2017년과 2018년의 지출액에 대한 시계열을 연계하는 예측값을 도출한다. 본 연구에서는 각 지출 항목들의 시계열적 특성을 골고루 반영하는 동시에 특정 예측 모형의 영향을 줄이기 위하여 총 8개의 회귀모형, 시계열모형, 머신러닝 기법을 합성하여 사용하였다. 특히 본 연구의 주목할 만한 특징은, Top-down 또는 Bottom-up 방식이 아닌, 정보의 손실없이 가계동향조사의 계층 구조를 반영할 수 있는 optimal combination 기법을 사용하여 예측력을 향상시켰다는 점이다. 2017년부터 2019년 자료에 대한 가계동향 지출 부문의 연계 분석 결과, 본 연구가 제안하는 연계 방식이 시계열 단절성 회복 및 예측력 향상에 기여하며, 또한 optimal combination 기법에 의한 계층 조정 후의 예측값이 조사자료에 보다 근접한 결과를 보여줌을 확인하였다.
최근 공사규모의 대형화, 복잡화 등으로 토목, 건축, 기계 등의 복합공종으로 구성된 공사들은 공기절감을 위해 패스트트랙(Fast Track) 방식으로 진행되는 사례가 많으며, 패스트트랙 방식에서는 적정 단계구분이 전체 프로젝트의 공기 책정에 중요한 사안이다. 본 연구에서는 복합공종으로 구성된 건설공사가 패스트트랙으로 진행될 때 적용할 수 있는 단계구분 방식을 제시하고 있다. 이를 위해 연구에서는 토목, 건축공사로 구성된 4개의 축구전용경기장 공사를 적용 사례로 분석하여 세분화된 공정분류체계(Work Breakdown Structure, WBS)를 통해 주요 단계별 공정 구분에 의한 일정표를 분석하고, 5가지 시안을 적용하여 패스트트랙 단계구분의 적정성을 분석한다. 분석된 시안중에서 최소 공기를 갖는 시안에 대하여 패스트트랙 단계구분 및 단계별 주요 공정의 구성 모형을 제시하였다. 이러한 방법론은 패스트트랙이 적용되는 유사한 규모의 대형 복합공사에서 패스트트랙 적용 시에 적정 단계 구분과 단계별 공정 구성 체계에 활용성을 가질 수 있다.
대규모 표사이동으로 인해 침·퇴적이 발생되는 해안에서는 시간이력에 따라 그 현상이 가속화되는 경향이 있기 때문에 적절하고도 시급한 대책을 강구하는 것이 중요하다. 해안침식의 대책방안 중 환경친화적 대책으로 알려진 양빈공법의 경우 입경의 크기에 따라 침식양상이 변화되므로 적정 입경의 크기, 범위 등에 대해 결정하기 위해서는 면밀한 검토가 필요하다. 본 연구에서는 양빈사의 입경변화와 부분양빈의 적용, 파랑과 바람이 공존하는 조건 등을 변수로 설정하였을 때 발생되는 지형변화의 특성을 검토하고자 하였다. 이러한 요인들은 수치모형실험에서 해석하기 어려운 부분이 존재하기 때문에 수리모형실험을 통해 정성적인 해석을 수행하거나 양빈수행 이후에 현장모니터링 등을 통해 그 효과를 검토하게 된다. 하지만 실험과 모니터링 등은 제반사항이 발생되기 때문에 다양한 조건에 대한 예측 연구에는 어려움이 존재한다. 본 논문에서는 빅데이터의 활용을 통한 머신러닝 기법을 이용하여 침·퇴적 경향을 재현함으로써 발생 가능한 현상에 대해 예측함과 동시에 머신러닝 기법의 적용성을 검토하고자 하였다. 학습데이터는 수리모형실험결과를 이용하였으며 연구결과 머신러닝을 이용한 지형변화는 단기예측의 경우 기존연구와 유사한 경향을 보이는 것으로 나타났으나 세굴 및 모래톱의 형성 등에서는 다소 차이가 존재하는 것을 확인할 수 있었다.
Despite recent breakthroughs in deep learning and computer vision fields, the pixel-wise identification of tiny objects in high-resolution images with complex disturbances remains challenging. This study proposes a modified U-net for tiny crack segmentation in real-world steel-box-girder bridges. The modified U-net adopts the common U-net framework and a novel Self-Attention-Self-Adaption (SASA) neuron as the fundamental computing element. The Self-Attention module applies softmax and gate operations to obtain the attention vector. It enables the neuron to focus on the most significant receptive fields when processing large-scale feature maps. The Self-Adaption module consists of a multiplayer perceptron subnet and achieves deeper feature extraction inside a single neuron. For data augmentation, a grid-based crack random elastic deformation (CRED) algorithm is designed to enrich the diversities and irregular shapes of distributed cracks. Grid-based uniform control nodes are first set on both input images and binary labels, random offsets are then employed on these control nodes, and bilinear interpolation is performed for the rest pixels. The proposed SASA neuron and CRED algorithm are simultaneously deployed to train the modified U-net. 200 raw images with a high resolution of 4928 × 3264 are collected, 160 for training and the rest 40 for the test. 512 × 512 patches are generated from the original images by a sliding window with an overlap of 256 as inputs. Results show that the average IoU between the recognized and ground-truth cracks reaches 0.409, which is 29.8% higher than the regular U-net. A five-fold cross-validation study is performed to verify that the proposed method is robust to different training and test images. Ablation experiments further demonstrate the effectiveness of the proposed SASA neuron and CRED algorithm. Promotions of the average IoU individually utilizing the SASA and CRED module add up to the final promotion of the full model, indicating that the SASA and CRED modules contribute to the different stages of model and data in the training process.
선박의 해양사고 중 부유물 감김사고는 운항지연에 그치지 않고 대형 인명 피해사고까지 이어질 수 있어 이에 대한 예방책이 요구되고 있다. 이에 본 연구는 영해와 베타적경제수역 등을 포함한 해역의 최근 5년간 선박의 부유물 감김사고 데이터를 시·공간적 측면에서 분석하고, 관련 연구 분야에 기초 자료를 제공하고자 한다. 부유물 감김사고의 상대적 밀도 분포를 시각화하기 위하여 이차원 평활 히스토그램을 적용하였으며, 시간대, 주·야간, 계절에 따른 각 변수가 감김사고에 미치는 영향을 분석하기 위해 다항 로지스틱 회귀모형을 적용하였다. 공간적 분석결과 전체 사고에 대해 평활화된 밀도 값이 높은 곳은 진해만을 포함한 거제도~통영 해상이었으며, 서해 전곡항 인근 해상, 제주도 북부 해상으로 나타났다. 시간적 분석결과 부유물 감김사고는 주간에 71.4%로 가장 많이 발생하였으며, 계절별로는 가을철이 다른 계절에 비해 가장 많이 발생한 것으로 분석되었다. 또한, 어선, 수상레저기구, 낚시어선의 감김사고 발생 가능성이 화물선 보다 높은 것으로 조사되었다. 본 연구의 시·공간적 분석결과는 향후 부유물에 대한 단속강화 및 제거를 위한 해양경찰함정 배치와 시간별·계절별 사고방지를 위한 부유물 사전 제거작업 대책 마련의 기초자료로 활용될 것으로 기대된다.
본 연구는 농업·농촌유산을 활용한 농촌 재생 방안을 마련하기 위하여 농업유산과 관련 제도를 통해 발생하는 지역사회 효과 검토와 해외 사례를 고찰함으로써 다음과 같은 지역 특성과 시사점을 도출할 수 있었다. 첫째, 농업유산 지정을 통해 유산의 가치 및 보전에 관한 인식 향상을 도모할 수 있었다. 그러나 추후 발생할 인구 고령화 등 사회문제에 대비할 수 있는 지역의 보전·관리 방안 마련이 필요한 것을 알 수 있었다. 둘째, 주민 인식은 농업유산 지정에 대하여 대부분 긍정적 인식을 보였으나, 경제적인 부분에서는 인식이 다소 떨어지므로 이를 보완할 수 있는 재생 방안이 필요함을 파악할 수 있었다. 셋째, 효과측정 모델을 적용한 결과 제도의 목적에 부합하는 보전·관리 효과가 높게 나타나고 있으며, 지자체와 주민협의체 등의 사업에 따라 효과에 차이가 있으므로 재생 방안 마련 시 목표 지향적인 대안이 필요한 것을 알 수 있었다. 넷째, 해외 사례를 통한 농촌 재생 방안을 살펴본 결과 대규모의 개발보다는 다양한 문화·자연 자원과 주변 지역까지 범위를 확대하여 활성화 방안을 마련하고 있음을 알 수 있었다. 본 연구는 농업유산 지역만을 대상으로 연구를 수행하였으나, 현재 흐름에 걸맞은 다양한 관점으로 농업·농촌유산을 검토해야 할 것으로 판단되며, 지역주민 인식뿐만 아니라 전문가 설문 등 지역의 지정 효과와 활성화 방안을 함께 고찰한 점에서 의의가 있다.
미래 기후 시나리오에 따르면 우리나라 자연재해의 주요 요인인 태풍의 강도는 강해질 것으로 전망된다. 태풍 강도 증가는 내습 파고 상승으로 이어져 주거, 산업, 관광 등의 용도로 인구 및 건물 밀집도가 높은 연안 지역의 대규모 피해발생 가능성이 높은 상황이다. 따라서 본 연구에서는 동해 해양기상부이 관측자료를 분석하여 최대 유의파고가 나타난 태풍 마이삭(202009) 내습 기간에 대해 파랑추산 수치모형실험을 수행하였다. 파랑추산실험 경계조건은 JMA-MSM의 바람장과 SSP5-8.5 미래 기후 시나리오의 태풍 중심기압 감소율을 적용한 바람장을 사용하였다. 파랑추산실험 결과 SSP5-8.5 시나리오에서 속초항 방파제 전면에서의 파고는 4.06 m에서 4.68 m로 15.27% 증가하였다. 또한, 심해설계파 147-2 격자점 위치에서의 재현빈도는 최소 2배 이상 증가하는 것으로 산출되어, 현재 해안구조물 설계 시 관행적으로 적용하는 50년 재현빈도 심해설계파에 대한 제고가 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.