• 제목/요약/키워드: Large warship

검색결과 9건 처리시간 0.019초

대형 함정에 부착된 flap의 저항감소 효과에 대한 실험적 고찰 (An Experimental Study on Resistance decrease Due to the Stern Flap of a Large Warship)

  • 허재경;이정관
    • 대한조선학회논문집
    • /
    • 제41권1호
    • /
    • pp.70-74
    • /
    • 2004
  • Model tests for a stern flap have been performed to decrease the resistance of a large warship and to optimize the flap. Stern flaps and wedges of fast crafts are studied to apply to a large vessel in terms of speed-length ratio. The model tests of the flap has been carried out to find the effects of the design parameters, i.e. length and angie on resistance decrease. This work concludes that the optimized stern flap reduced resistance not only at the high speed by 9% but also at the cruising speed.

함정 피격성 향상을 위한 시스템엔지니어링 접근법 기반의 기만선박 개념 연구 (A Study on Deception Ship for Ship Susceptibility Improvement based on System Engineering Approach)

  • 강희진;신종계;이동곤;최진
    • 대한조선학회논문집
    • /
    • 제46권3호
    • /
    • pp.313-314
    • /
    • 2009
  • To project military power, the paradigm of the modern warship aquisition has evolved with more large platform and high-technology equipment. For example, the Aegis combat system equipped warship is one of the most advanced and capable defense systems currently in use. Concurrently, if the warship attacked and disabled, it may worse the asymmetry of the battle field and it also depress the morale of the fleet. For that reason, to keep and protect few number of the big and high technology equipped warship from enemy is very important. At the present, the performance of unit weapon has enhanced remarkably. A Korean-built SS-209 class submarine, Lee Chun-ham, participated in Naval Exercise Tandem Thrust conducted in 1999, sink the target ship ex-USS Oklahoma by a single torpedo. USS Stark was struck on May 17, 1987, by two Exocet anti ship missiles and disabled. For this reason, susceptibility should be prior to vulnerability and recoverability. In this paper, deception ship which is small and chief but has very similar signatures to large and high technology equiped warship has conceptually studied by using systems engineering approach. And it may be a effective way to enhance the susceptibility of the key fighting power.

복합구조물의 RCS 저감을 위한 효율적 산란중심 해석에 관한 연구 (A Study on the Effective Scattering Center Analysis for Radar Cross Section Reduction of Complex Structures)

  • 김국현;김진형;조대승
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.421-426
    • /
    • 2005
  • Scattering center extraction schemes for radar cross section reduction of large complex targets, like warships, was developed, which are an 1-D radar image method(range profile), and a direct analysis based on an object precision method. The analysis result of partial dihedral model shows that the presented direct analysis method is more efficient than the 1-D radar image method for scattering center extraction of interested targets, in terms of radar cross section reduction design, not signal processing. In order to verify the accuracy of the direct analysis method, a scattering center analysis of an naval weapon system was carried out, and the result was coincident with that of another well-known RCS analysis program. Finally, an analysis result of RCS and its scattering center of an 120m class warship-like model presented that the direct analysis method can be an efficient and powerful tools for radar cross section reduction of large complex targets.

차세대 함정 전투체계 아키텍처 구축방안에 관한 연구 (A Study on Development direction of Next-generation Naval Combat System Architecture)

  • 황광룡;옥경찬;김영진;최봉완;오현승;최관선
    • 한국군사과학기술학회지
    • /
    • 제19권1호
    • /
    • pp.105-118
    • /
    • 2016
  • A naval combat system is the system of systems who supports naval indigenous operations by integrating and inter-operating many different kind of weapons, which has characteristics of large scale complex computing system. ROK Navy has been built a blue ocean navy, so that large scale warships are under constructions. However, warship combat system architecture has not been well studied so far in Korea. The paper focuses on current combat system architecture and propose the next generation combat system architecture, which will give the development direction of ROK Navy. In order to complete combat system architecture studies, the system engineering process shall be applied to the study. Moreover, ARENA simulation tool is used for verification of combat system architecture. The system engineering process is as follows: next-generation naval combat system requirement analysis, functional architecture analysis and physical architecture analysis.

국가의 해양주권 수호를 위한 한국해군의 전력건설 방향 (The Construction Direction of the ROK NAVY for the Protection of Marine Sovereignty)

  • 신인균
    • Strategy21
    • /
    • 통권30호
    • /
    • pp.99-142
    • /
    • 2012
  • Withe increased North Korea's security threats, the South Korean navy has been faced with deteriorating security environment. While North Korea has increased asymmetric forces in the maritime and underwater with the development of nuclear weapons, and China and Japan have made a large investment in the buildup of naval forces, the power of the Pacific fleet of the US, a key ally is expected to be weakened. The biggest threat comes from China's intervention in case of full-scale war with North Korea, but low-density conflict issues are also serious problems. North Korea has violated the Armistice Agreement 2,660 times since the end of Korean War, among which the number of marine provocations reaches 1,430 times, and the tension over the NLL issue has been intensifying. With tension mounting between Korea and Japan over the Dokdo issue and conflict escalating with China over Ieo do Islet, the US Navy has confronted situation where it cannot fully concentrate on the security of the Korean peninsula, which leads to need for strengthening of South Korea's naval forces. Let's look at naval forces of neighboring countries. North Korea is threatening South Korean navy with its increased asymmetric forces, including submarines. China has achieved the remarkable development of naval forces since the promotion of 3-step plan to strengthen naval power from 1989, and it now retains highly modernized naval forces. Japan makes an investment in the construction of stat of the art warship every year. Since Japan's warship boasts of its advanced performance, Japan's Maritime Self Defense Force is evaluated the second most powerful behind the US Navy on the assumption that submarine power is not included in the naval forces. In this situation, naval power construction of South Korean navy should be done in phases, focusing on the followings; First, military strength to repel the energy warship quickly without any damage in case of battle with North Korea needs to be secured. Second, it is necessary to develop abilities to discourage the use of nuclear weapons of North Korea and attack its nuclear facilities in case of emergency. Third, construction of military power to suppress armed provocations from China and Japan is required. Based on the above naval power construction methods, the direction of power construction is suggested as follows. The sea fleet needs to build up its war potential to defeat the naval forces of North Korea quickly and participate in anti-submarine operations in response to North Korea's provocations. The task fleet should be composed of 3 task flotilla and retain the power to support the sea fleet and suppress the occurrence of maritime disputes with neighboring countries. In addition, it is necessary to expand submarine power, a high value power asset in preparation for establishment of submarine headquarters in 2015, develop anti-submarine helicopter and load SLAM-ER missile onto P-3C patrol aircraft. In case of maine corps, division class military force should be able to conduct landing operations. It takes more than 10 years to construct a new warship. Accordingly, it is necessary to establish plans for naval power construction carefully in consideration of reality and future. For the naval forces to safeguard maritime sovereignty and contribute to national security, the acquisition of a huge budget and buildup of military power is required. In this regard, enhancement of naval power can be achieved only through national, political and military understanding and agreement. It is necessary to let the nation know that modern naval forces with improved weapon system can serve as comprehensive armed forces to secure the command of the sea, perform defense of territory and territorial sky and attack the enemy's strategic facilities and budget inputted in the naval forces is the essential source for early end of the war and minimization of damage to the people. If the naval power construction is not realized, we can be faced with a national disgrace of usurpation of national sovereignty of 100 years ago. Accordingly, the strengthening of naval forces must be realized.

  • PDF

폭발강화격벽의 초기구조설계에 관한 연구 (제2보 : 커튼판 방식 폭발강화격벽의 설계식 개발) (Preliminary Structural Design of Blast Hardened Bulkhead (The 2nd Report : Scantling Formula for Curtain Plate Type Blast Hardened Bulkhead))

  • 노인식;박만재;조윤식
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.379-384
    • /
    • 2018
  • This study showed the development process of structural design method of BHB(Blast Hardened Bulkhead) which are applicable in preliminary design stage. In the previous 1st report, the simplified structural scantling equations of BHB were formulated theoretically using the modified plastic hinge method supplemented by considering the membrane effects due to large plastic deformation. And the scantling methodology of plate thickness and section area of stiffeners of the curtain plate type BHB was dealt with. In the present 2nd report, derivation process of the correction factors which can adjust the developed scantling equations considering the uncertainties contained in the design parameters was introduced. Considering the actual BHB structures of 3 warship, the correction factors for the developed scantling equations for curtain plate type BHB were derived. Finally the applicability, validity of them and the strategy of future improvement were considered.

선체외판의 변형이 수상함 RCS에 미치는 영향 연구 (Study on Effect of Shell Plate Deformation to Radar Cross Section of Warship)

  • 김국현;조대승
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.509-515
    • /
    • 2011
  • The radar cross section (RCS) of warships is a crucial design factor to improve the survivability in terms of not only low observablity of the platform but also efficiency of on-board sensors and jamming devices against enemy threat. In design stage, numerical models are generated in order to quantitatively assess RCS, of which hull surfaces are modeled with the finite number of the flat plate. However, in practice, hull surfaces are permanently deformed by various kinds of loads such as winds and ocean waves faced during operations. In this paper, the effect of these shell plate deformation to RCS is numerically investigated. For this purpose, RCS calculations are carried out for various kinds of numerical models, such as single plates, dihedrals, large-sized undulate plates, and virtual warships, with some extent of permanent deformation. The results are compared with those of corresponding models without permanent deformation. It is concluded that the permanent deformation of hull surface highly influences RCS characteristics of warships, therefore they should be considered in the RCS analysis.

선미 부가물 수정에 따른 프로펠러 캐비테이션 성능 향상 연구 (Study of the Propeller Cavitation Performance Improvement Through the Stern Appendage Modification)

  • 안종우;박영하;김건도;백부근;설한신;박일룡
    • 대한조선학회논문집
    • /
    • 제60권1호
    • /
    • pp.1-9
    • /
    • 2023
  • In order to improve the propeller cavitation performance composed of Cavitation Inception Speed (CIS), cavitation extent and pressure fluctuation, it needs to improve the wake distribution that flows into the propeller. The warship propeller cavitation is strongly influenced by the wake created at the V-strut of various appendages. The inflow characteristics of the V-strut were investigated using Computational Fluid Dynamics (CFD) and the twisted angles of the V-strut were aligned with upstream flow. The resistance and self-propulsion tests for the model ship with the existing and modified V-struts were conducted in Towing Tank (TT), and wake distribution, CIS, cavitation observation and pressure fluctuation tests were conducted in Large Cavitation Tunnel (LCT). The propeller behind the modified V-strut showed better cavitation characteristics than that behind the existing V-strut. Another model test was conducted to investigate rudder cavitation performance by the change of the V-strut. The rudder cavitation characteristics were not improved by the change of the operating conditions. On the basis of the present study, it is thought that the stern appendages for better propeller cavitation performance would be developed.

네거티브 설계 개념을 이용한 함정 설계영역탐색법 개발 (Development of Design Space Exploration for Warship using the Concept of Negative Design)

  • 박진원
    • 한국산학기술학회논문지
    • /
    • 제20권9호
    • /
    • pp.412-419
    • /
    • 2019
  • 예술에서 네거티브 공간은 관심 있는 피사체 주위 공간과 여러 피사체 사이의 공간으로 정의된다. 네거티브 공간은 때로는 이미지의 "실질적" 주제로서 예술적 효과에 사용되기 때문에 예술적 구성요소 중 하나이다. 회화에서는 표현하고자 하는 사물의 배경을 음각으로 터치하는 화법으로 필요한 부분은 남기고 불필요한 부분을 터치하여 독특한 질감과 실루엣의 느낌을 주는 회화기법을 말한다. 예술에서 그것의 개념처럼 설계에서 네거티브 공간은 기술적으로 실행하기 어려운 설계범위를 직관적으로 파악하는데 유용할 수 있다. 두 영역 간의 유사성은 설계영역탐색에 네거티브 개념의 도입을 이끌었다. 통계분석과 시각화분석을 도구로 하는 설계영역탐색은 더 효율적인 의사결정을 지원하고 초기단계 시스템 설계의 방향에 대한 의미 있는 통찰력을 제공할 수 있다. 복잡하고 많은 양의 데이터를 요약한 시각화된 정보는 인간의 인지시스템과 동적인 상호작용을 보장하기 때문이다. 기술적으로 실행할 수 없거나 위험성이 높은 설계공간을 피할 수 있을 뿐만 아니라 실행 가능한 설계공간을 정의하는 데 유용하다. 논문에서 적용 예를 통해 네거티브 설계 개념 기반 설계영역탐색법의 활용 가능성을 살펴본다.