• 제목/요약/키워드: Large strains

Search Result 558, Processing Time 0.217 seconds

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

Primer Evaluation for the Detection of Toxigenic Microcystis by PCR (독소 생성 Microcystis 검출을 위한 PCR primer의 평가)

  • 이현경;김준호;유순애;안태석;김치경;이동훈
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.166-174
    • /
    • 2003
  • Microcystin produced by cyanobacteria in surface waters, such as eutrophic lake and river, is a kind of serious environmental problems due to its toxicity to human and wild animals. Microcystin is synthesized nonribosomally by the large modular multi-functional enzyme complex known as microcystin synthetase encoded by the mcy gene cluster. Amplification of mcy genes by PCR from cultures and environmental samples is a simple and efficient method to detect the toxigenic Microcystis. In order to evaluate primers designed to detect toxic microcystin-producing strains, 17 cyanobacterial strains and 20 environmental samples were examined by PCR with 7 pairs of primers. Some microcystin-producing cyanobacteria were not detected with FAA-RAA, TOX4F-TOX4R and FP-RP primers. The fragment of unexpected size was amplified with NSZW2-NSZW1 primers in Microcystis strains isolated from the lakes in Korea. TOX1P-TOX1F primers failed in amplification of toxin-producing strains. Only MSF-MSR and TOX2P- TOX2F primers amplified the fragments of mcy genes from 11 strains of microcystin-producing Microcystis. The water samples taken from 20 lakes in Korea were analyzed by PCR using each of the primers. In all the water samples, cyanobacteria capable of producing microcystin were detected by the PCR with TOX2P-TOX2F primers. These results indicate that TOX2P-TOX2F primers are better than the other primers for detection of microcystin-producing Microcystis strains in Korea. The nucleotide sequences of mcy gene in Microcystis aeruginosa NIER10010 suggest genetic diversity of Korean isolates.

Genomic analysis of Mycobacterium fortuitum by pulsed-field gel electrophoresis (Pulsed-field Gel Electrophoresis를 이용한 Mycobacterium fortuitum의 유전형 분석)

  • Lee, Tae-Yoon;Do, In-A;Kim, Sung-Kwang
    • Journal of Yeungnam Medical Science
    • /
    • v.12 no.2
    • /
    • pp.366-385
    • /
    • 1995
  • Epidemiological studies are important in both the prevention and treatment of mycobacterial infections. This study was initiated to establish the pulsed-field gel electrophoresis (PFGE) method, which are not yet extensively studied. The most apprpriate restriction endonucleases included DraI, AsnI, and XbaI. The optimal PFGE condition was different according to the enzymes used. Two stage PFGE was performed, in case of DraI first stage was performed with 10 seconds of initial pulse and 15 seconds of final pulse, while the second stage was performed with 60 seconds of initial pulse and 70 seconds of final pulse. The electrophoresis time for DraI-PFGE was 14 hours for each stage. Electrophoresis was performed for 22 hours, in case of XbaI, with 3 seconds of initial pulse and 12 seconds of final pulse. Electrophoresis was performed for 22 hours, in case of AsnI, with 5 seconds of initial pulse and 25 seconds of final pulse. In all cases the voltage of the electrophoresis was maintained constantly at 200 voltage. Standard mycobacterial strains, which included Mycobacterium bovis BCG, M. tuberculosis, and M. fortuitum, could not be differentiated by PFGE analysis. PFGE analysis was performed to differentiate 9 clinically isolated M. fortuitum strains using AsnI. All M. fortuitum strains showed different genotypes except 2 strains. Cluster analysis divided M. fortuitum strains into 2 large groups. PFGE analysis was performed to further differentiate M. fortuitum isolates using XbaI. The undifferentiated 2 M. fortuitum strains showed different PFGE patterns with Xba I. Cluster analysis of the XbaI-PFGE patterns showed more complex grouping than AsnI-PFGE patterns, which showed that XbaI-PFGE analysis was better than AsnI-PFGE in M. fortuitum genotyping. The top dissimilarity values of AsnI-PFGE and XbaI-PFGE were 0.74 and 0.75, respectively. This value was higher than that of arbitrarily primed polymerase chain reaction (AP-PCR) analysis and lower than that of restriction fragment length polymorphism (RFLP) analysis. This suggested that PFGE can be used as a supportive or alternative genotyping method to RFLP analysis.

  • PDF

Physiological and Genetic Characteristics of Cultivated Mushroom, Hypsizygus marmoreus

  • Kim, Min-Kyung;Seo, Geon-Sik
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.21-21
    • /
    • 2014
  • A edible mushroom, Hypsizygus marmoreus is commercially cultivated in Northeast Asia. Japan's annual production is 110,000ton or more. Since 2002, cultivation is expanded in Korea. To investigate the morphological, cultural and microscopic characteristics of Hypsizygus marmoreus, 109 isolates were collected from Korea and other countries. Clamp connection, chlamydospore and arthrospore were present in all tested isolates of H. marmoreus except HYM-002 and HYM-004. Also pilealtrama, gilltrama, basidia, basidiospore and cystidia of fruiting body were no difference among the isolates in the present investigation. Morphological characteristics of fruiting body was that color of pileus was brown and white, irregular as marble, the average size 12~22mm and stipes was $46{\sim}91{\times}6{\sim}10mm$. Isolates HYM-031, HYM-047 and HYM-109 formed grayish-brown pileus with a faint pattern. Molecular analysis with RAPD and ITS rDNA sequence analysis were also performed to check the genetic relationships among H. marmoreus isolates. Based on the RAPD analysis using the URP-PCR, all isolates of H. marmoreus were clustered into large 3 groups but more than 90% showed high similarity. In addition, morphological and geographical differences have been classified as an independent cluster. The brown and white strains enclosed in same cluster. So genetically no significance difference was observed between these two strains. ITS gene sequences of 16 selected isolates which were 640 bp long, were aligned and compared. The similarity in ITS sequence was 94.8 to 99.1% among tested isolates and the H. marmoreus isolates in GeneBank. In conclusion the tested isolates were H. marmoreus. Morphological and molecular observations proved that all tested isolates were belonging to H. marmoreus. For the stable artificial cultivation, composition of optimum media, mature period and light condition were established. Optimal formula of artificial cultivation medium was Douglas sawdust: corn cob: soybean meal: wheat bran = 40:30:15:15. In addition, 7% rice bran and 3% yellow sucrose was the most effective composition for spawn's liquid medium. For the maturation of the isolates was favorable for growing for 20 to 30 days at $25^{\circ}C$ and the LED lights in mixture of white and blue was good for growth period. For effective growth, the temperature, humidity and aeration control in every step was important.

  • PDF

Three-Dimensional Shape Estimation of Beam Structure Using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 보 구조물의 3차원 형상 추정)

  • Lee, Jin-Hyuk;Kim, Heon-Young;Kim, Dae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.241-247
    • /
    • 2015
  • Deflection and deformation occur easily in structures with long length, such as bridges and pipelines. Shape monitoring is required for ensuring their structural health. A fiber Bragg grating (FBG) sensor can be used for monitoring a large-scale structure because of its advantage of multiplexing. In this study, FBG sensors were used for monitoring a composite beam structure, and its strains were measured at multiple points. Thereafter, a shape estimation technique based on the strains was studied. Particularly, a three-dimensional shape estimation technique was proposed for accurate structural health monitoring. A simple experiment was conducted to verify the performance of the shape estimation technique. The result revealed that the estimated shape of the composite beam structure was in agreement with the actual shape obtained after the deformation of the specimen. Additionally, the deflection at a specific point was verified by comparing the estimated and actual deformations measured using a micrometer.

Effectiveness of Nanocrystalline Silver(Acticoat®) Dressing at Wound Infected by Multidrug Resistant Bacteria (다제내성(多劑耐性)을 지닌 균주에 감염된 상처에서 Nanocrystalline Silver(Acticoat®) 드레싱의 효용)

  • Jeong, Tae Kwang;Yang, Ho Jik
    • Archives of Plastic Surgery
    • /
    • v.34 no.6
    • /
    • pp.691-696
    • /
    • 2007
  • Purpose: The emergency of multi-drug resistant stains of bacteria represents a challenge in the field of plastic surgery. Especially, MRSA(methycillin-resistant Staphylococcus aureus) and Pseudomonas aeruginosa have strong pathogenicity as well as multi-drug resistance so that they have become a lot more problematic strains. This study has been planned to reduce the bacterial burden by applying $Acticoat^{(R)}$(Smith & Nephew Healthcare, Hull, England)dressing into the chronic wounds infected by multi-drug resistant strains and to facilitate their healing. Methods: Nanocrystalline silver dressings($Acticoat^{(R)}$) were applied to chronic wound infected by MRSA or Pseudomonas aeruginosa. Multi-drug resistant bacteria were smeared over a slide glass using sterilized cotton swabs and gram stains were performed directly before and after applying $Acticoat^{(R)}$ dressings at 1, 24, 48 and 72 hours. The gram-stained slides were observed using an optical microscope magnified 1000 times(${\times}1000$). The bacterial counts of the control group(0 hour) were compared to those of the experimental groups(1, 24, 48, and 72 hour). Paired T-test was used to assess a statistical significance. MRSA was cultured in two BAPs(blood agar plate) and two MacConkey plates with streak plate method. None were interventions on one culture plate, while on the other culture plate, $Acticoat^{(R)}$ was placed in a square shape and cultured for 72 hours at $37^{\circ}C$, then plates were examined. Pseudomonas aeruginosa was cultured in the same manner as MRSA. Results: There are the large amount of declination of bacterial counts with statistical significance after $Acticoat^{(R)}$ dressing. The bacteria grew in culture plate without specific intervention, but no bacteria grew in culture plate with applying of $Acticoat^{(R)}$ dressing. Conclusion: We believe that $Acticoat^{(R)}$ dressing could be used as an effective method of treating chronic wounds which are infected by multi-drug resistant organisms.

Nonlinear Analysis of Improved Degenerated Shell Finite Element (개선된 Degenerated 쉘 유한요소의 비선형 해석)

  • 최창근;유승운
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.113-123
    • /
    • 1990
  • The paper is concerned with the elasto-plastic and geometrically nonlinear analysis of shell structures using an improved degenerated shell element. In the formulation of the element stiffness, the combined use of three different techniques was made. They are; 1) an enhanced interpolation of transverse shear strains in the natural coordinate system to overcome the shear locking problem ; 2) the reduced integration technique in in-plane strains to avoid the membrane locking behavior ; and 3) selective addition of the nonconforming displacement modes to improve the element performances. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. In the formulation for plastic deformation, the concept of a layered element model is used and the material is assumed von Mises yield criterion. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements and rotations. The resulting non-linear equilibrium equations are solved by the Netwon-Raphson method combined with load or displacement increment. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

Increasing the Triacylglycerol Content in Dunaliella tertiolecta through Isolation of Starch-Deficient Mutants

  • Sirikhachornkit, Anchalee;Vuttipongchaikij, Supachai;Suttangkakul, Anongpat;Yokthongwattana, Kittisak;Juntawong, Piyada;Pokethitiyook, Prayad;Kangvansaichol, Kunn;Meetam, Metha
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.854-866
    • /
    • 2016
  • The production cost of biodiesel from microalgae is still not competitive, compared with that of petroleum fuels. The genetic improvement of microalgal strains to increase triacylglycerol (TAG) accumulation is one way to reduce production costs. One of the most promising approaches is the isolation of starch-deficient mutants, which have been reported to successfully increase TAG yields. To date, such a stable mutant is not available in an oleaginous marine microalga, despite several advantages of using marine species for biodiesel production. Algae in the genus Dunaliella are known to tolerate high salt concentration and other environmental stresses. In addition, the cultivation processes for large-scale outdoor commercialization have been well established for this genus. In this study, Dunaliella tertiolecta was used to screen for starch-deficient mutants, using an iodine vapor-staining method. Four out of 20,016 UV-mutagenized strains showed a substantial reduction of starch content. A significantly higher TAG content, up to 3-fold of the wild-type level, was observed in three of the mutants upon induction by nitrogen depletion. The carotenoid production and growth characteristics of these mutants, under both normal and oxidative stress conditions, were not compromised, suggesting that these processes are not necessarily affected by starch deficiency. The results from this work open up new possibilities for exploring Dunaliella for biodiesel production.

Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives

  • Baeshen, Mohammed N.;Al-Hejin, Ahmed M.;Bora, Roop S.;Ahmed, Mohamed M. M.;Ramadan, Hassan A. I.;Saini, Kulvinder S.;Baeshen, Nabih A.;Redwan, Elrashdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.953-962
    • /
    • 2015
  • Escherichia coli is the most preferred microorganism to express heterologous proteins for therapeutic use, as around 30% of the approved therapeutic proteins are currently being produced using it as a host. Owing to its rapid growth, high yield of the product, costeffectiveness, and easy scale-up process, E. coli is an expression host of choice in the biotechnology industry for large-scale production of proteins, particularly non-glycosylated proteins, for therapeutic use. The availability of various E. coli expression vectors and strains, relatively easy protein folding mechanisms, and bioprocess technologies, makes it very attractive for industrial applications. However, the codon usage in E. coli and the absence of post-translational modifications, such as glycosylation, phosphorylation, and proteolytic processing, limit its use for the production of slightly complex recombinant biopharmaceuticals. Several new technological advancements in the E. coli expression system to meet the biotechnology industry requirements have been made, such as novel engineered strains, genetically modifying E. coli to possess capability to glycosylate heterologous proteins and express complex proteins, including full-length glycosylated antibodies. This review summarizes the recent advancements that may further expand the use of the E. coli expression system to produce more complex and also glycosylated proteins for therapeutic use in the future.

Construction of an Efficient Mutant Strain of Trichosporonoides oedocephalis with HOG1 Gene Deletion for Production of Erythritol

  • Li, Liangzhi;Yang, Tianyi;Guo, Weiqiang;Ju, Xin;Hu, Cuiying;Tang, Bingyu;Fu, Jiaolong;Gu, Jingsheng;Zhang, Haiyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.700-709
    • /
    • 2016
  • The mitogen-activated protein kinase HOG1 (high-osmolarity glycerol response pathway) plays a crucial role in the response of yeast to hyperosmotic shock. Trichosporonoides oedocephalis produces large amounts of polyols (e.g., erythritol and glycerol) in a culture medium. However, the effects of HOG1 gene knockout and environmental stress on the production of these polyols have not yet been studied. In this study, a To-HOG1 null mutation was constructed in T. oedocephalis using the loxP-Kan-loxP/Cre system as replacement of the targeted genes, and the resultant mutants showed much smaller colonies than the wild-type controls. Interestingly, compared with the wild-type strains, the results of shake-flask culture showed that To-HOG1 null mutation increased erythritol production by 1.44-fold while decreasing glycerol production by 71.23%. In addition, this study investigated the effects of citric acid stress on the T. oedocephalis HOG1 null mutants and the wild-type strain. When the supplementation of citric acid in the fermentation medium was controlled at 0.3% (w/v), the concentration of erythritol produced from the wild-type and To-HOG1 knockout mutant strains improved by 18.21% and 21.65%, respectively.