DOI QR코드

DOI QR Code

Three-Dimensional Shape Estimation of Beam Structure Using Fiber Bragg Grating Sensors

광섬유 브래그 격자 센서를 이용한 보 구조물의 3차원 형상 추정

  • Lee, Jin-Hyuk (Graduate School of Energy and Environment, Seoul Nat'l Univ. of Science and Technology) ;
  • Kim, Heon-Young (Dept. of Mechanical Engineering, Graduate Schools of Seoul Nat'l Univ. of Science and Technology) ;
  • Kim, Dae-Hyun (Dept. of Mechanical & Automative Engineering, Seoul Nat'l Univ. of Science and Technology)
  • 이진혁 (서울과학기술대학교 에너지환경대학원) ;
  • 김헌영 (서울과학기술대학교 대학원 기계공학과) ;
  • 김대현 (서울과학기술대학교 기계.자동차공학과)
  • Received : 2014.06.10
  • Accepted : 2015.01.22
  • Published : 2015.03.01

Abstract

Deflection and deformation occur easily in structures with long length, such as bridges and pipelines. Shape monitoring is required for ensuring their structural health. A fiber Bragg grating (FBG) sensor can be used for monitoring a large-scale structure because of its advantage of multiplexing. In this study, FBG sensors were used for monitoring a composite beam structure, and its strains were measured at multiple points. Thereafter, a shape estimation technique based on the strains was studied. Particularly, a three-dimensional shape estimation technique was proposed for accurate structural health monitoring. A simple experiment was conducted to verify the performance of the shape estimation technique. The result revealed that the estimated shape of the composite beam structure was in agreement with the actual shape obtained after the deformation of the specimen. Additionally, the deflection at a specific point was verified by comparing the estimated and actual deformations measured using a micrometer.

교량이나 배관과 같이 긴 길이의 구조물은 처짐 및 변형이 발생하기 쉽다. 이러한 구조물의 건전성 감시를 위해서는 국부적인 물리량 측정뿐만 아니라 전체의 형상 감시가 필요하다. 광섬유 브래그 격자(Fiber Bragg Grating; FBG) 센서는 광섬유에 다수의 센서 적용이 가능하여 대형 구조물 감시에 효과적이다. 본 연구에서는 FBG를 이용하여 구조물의 다점에서 변형률을 측정하고, 이를 바탕으로 구조물 전체의 형상 추정을 위한 연구를 수행하였다. 구조물의 정확한 감시가 가능하도록 3차원의 형상 추정을 연구하고 실험적 검증을 수행하였다. 실험 결과 구조물의 변형에 따른 형상 변화의 추정이 가능함을 확인하였고, 추가로 특정 위치에서의 처짐량을 실제 마이크로미터로 측정한 값과 예측된 값을 비교하여 검증하였다.

Keywords

References

  1. Chebrolu, K., Raman, B., Mishra, N., Valiveti, P. K. and Kumar, R., 2008, "A Sensor Network System for Railway Bridge Monitoring," Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, pp. 2-14.
  2. Frangopol, D. M., Asce, F., Strauss, A. and Kim, S., 2008, "Bridge Reliability Assesment Based on Monitoring," Jounal of Bridge Engineering, Vol. 13, No. 3, pp. 258-270. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:3(258)
  3. Moschas, F. and Stiros, S., 2011, "Measurement of the Dynamic Displacements and of the Modal Frequencies of a Short-Span Pedestrian Bridge Using GPS and an Accelerometer," Engineering Structures, Vol. 33, pp. 10-17. https://doi.org/10.1016/j.engstruct.2010.09.013
  4. Lee, K.-H. and Kim, D.-H., 2013, "Shape Monitoring of Composite Cantilever Beam by Using Fiber Bragg Grating Sensors," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 7, pp. 833-839. https://doi.org/10.3795/KSME-A.2013.37.7.833
  5. Kim, D.-H., 2009, "Experimental Analysis on Vibration of Composite Plate by Using FBG Sensor System," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 5, pp. 436-441.
  6. Bjerkan, L., 2000, "Application of Fiber-Optic Bragg Grating Sensors in Monitoring Environmental Loads of Overhead Power Transmission Lines," Optics, Vol. 39, No. 4, pp. 554-560.
  7. Tam, H. Y., Lee, T., Ho, S. L., Haber, T., Graver, T. and Mendez, A., 2007, "Utilization of Fiber Optic Bragg Grating Sensing Systems for Health Monitoring in Railway Applications," Proceedings of the 6th International Workshop on Structural Health Monitoring, pp. 1824-1831.
  8. Casas, J. R., Cruz, P. J. S. and Asce, M., 2003, "Fiber Optic Sensors for Bridge Monitoring," Jounal of Bridge Engineering, Vol. 8, No. 6, pp. 362-373. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:6(362)
  9. Kim, H.-I., Kang, L.-H. and Han, J.-H., 2011, "Shape Estimation with Distributed Fiber Bragg Grating Sensors for Rotating Structures," Smart Materials and Structures, Vol. 20, No.3, pp. 035011-035022. https://doi.org/10.1088/0964-1726/20/3/035011
  10. Yi, X., Qian, J., Shen, L., Zhang, Y. and Zhang, Z., 2007, "An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array," Proceedings of the International Conference on Information Acquisition, pp. 227-232.
  11. Abayazid, M., Kemp, M. and Misra, S., 2013, "3D Flexible Needle Steering in Soft-Tissue Phantoms Using Fiber Bragg Grating Sensors," IEEE International Conference on Robotics and Automation, pp. 5843-5849.
  12. Childers, B. A., Gifford, D. K., Duncan, R. G., Raum, M. T., Vercellino, M. E. and Froggatt, M. E., 2010, "Fiber Optic Position and Shape Sensing Device and Method Relating Thereto," U.S. Patent No. 7,781,724.
  13. Kim, H.-Y., Kang, D., Lee, J.-H. and Kim, D.-H., 2013, "Characteristics of Thermal Coefficient of Fiber Bragg Grating for Temperature Measurement," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 8, pp. 999-1005. https://doi.org/10.3795/KSME-A.2013.37.8.999