• Title/Summary/Keyword: Large scale hydrogen

검색결과 121건 처리시간 0.03초

Toward a Self-Consistent Simulation of the Cosmic Reionization

  • 안경진
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.78.2-78.2
    • /
    • 2010
  • Ionization of hydrogen occurs globally in our universe. The epoch of this cosmic reionization may be probed by various observations, among which the 21cm observation of neutral hydrogen at high redshift is the most promising candidate. In order to provide a mock data, we have performed the first, self-consistent simulation of cosmic reionization. We account for all possible UV-radiating sources which reside in halos ranging from minihalos to atomically-cooling halos. In order to simulate the contribution from Pop III objects, we also calculate the radiative transfer of Lyman-Werner radiation and apply a suppression criterion for Pop III objects. Our priliminary result indicates that Pop III objects ionize the universe at very high redshift and create rich, small-scale bubble structure, while sources in atomically-cooling halos ionize the universe at relatively low redshift and create large-scale bubble structure. We discuss how these two different scales and epoch may be probed by future 21cm observations.

  • PDF

소형 공정열교환기 시제품에 대한 탄소성 고온구조해석 (Elastic/Plastic High-temperature Structural Analysis on the Small Scale PHE Prototype)

  • 송기남;이형연;홍성덕;박홍윤
    • 한국압력기기공학회 논문집
    • /
    • 제7권2호
    • /
    • pp.1-6
    • /
    • 2011
  • PHE(Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR(Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established a small-scale gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype made of Hastelloy-X to be tested in the small-scale gas loop. Results from the elastic structural analysis on the PHE prototype were reported in the previous article. In order to investigate the macroscopic structural characteristics and behavior of the PHE prototype under the test condition of the small-scale gas loop far more in detail, elastic-plastic high-temperature structural-analysis of the PHE prototype was carried out in this study.

장주기/대용량 수소저장을 위한 액체/고체기반 Slush 수소의 저장 비용 분석 (An Economic Analysis on Slush Hydrogen Containing Liquid and Solid Phase for Long-Term and Large-Scale Storage)

  • 박성호;이창형;류주열;황성현
    • 한국수소및신에너지학회논문집
    • /
    • 제33권3호
    • /
    • pp.247-254
    • /
    • 2022
  • Slush hydrogen containing liquid and solid hydrogen is expected to achieve zero boil-off by suppressing boil-off gas because heat of fusion for solid absorbe the heat ingress from atmosphere. In this paper, quantitative analysis on storage cost considering specific energy consumption between 1,000 m3 class liquid hydrogen storage system with re-liquefaction and slush hydrogen storage system during equivalent zero boil off period. Even though approximately 50% of total storage capacity should be converted into solid phase during the initial cargo bunkering, total energy consumption to convert into slush hydrogen is relatively 25% less than re-liquefaction energy for boil off hydrogen during zero boil off period. That's because energy consumption of slush phase change take up only 1.8% of liquefaction energy. moreover, annual revenue requirement including CAPEX, OPEX and electric cost for slush hydrogen storage could be more reduced approximately 32.5% than those of liquid hydrogen storage and specific energy storage cost ($/kg-H2) could also be lowered by about 41.7% compared with liquid hydrogen storage.

대용량 액체수소 인수기지 쿨다운 해석 기술 연구 (Study on Cool-down Analysis Technology for Large Scale Liquid Hydrogen Receiving Terminal)

  • 박창원;김동혁;이영범;서흥석;권용수
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.34-39
    • /
    • 2024
  • Korea government is trying to supply liquid hydrogen from another country to domestic The research for liquid hydrogen transportation and liquefaction plant of hydrogen underway for several years, and empirical research is also planned in the future. Along with the development of liquid hydrogen transport ship/liquefaction plant technology, the development of liquid hydrogen reception base technology must be carried out. In this study, a concept level liquid hydrogen receiving terminal is constructed based on the process of the LNG receiving terminal. Based on this, a study is conducted on the development of analysis technology for the amount of BOG (pipe, tank) generated during cooldown and unloading in the liquid hydrogen unloading line (loading arm to storage tank). The research results are intended to be used as basic data for the design and liquid hydrogen receiving terminal in the future.

Exergy and exergoeconomic analysis of hydrogen and power cogeneration using an HTR plant

  • Norouzi, Nima;Talebi, Saeed;Fani, Maryam;Khajehpour, Hossein
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2753-2760
    • /
    • 2021
  • This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor, steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 ℃. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 ton/hr 540 ℃ steam generated in this cycle is sufficient to supply a high-temperature synthesis current source (700 ℃), which raises the steam-gas mixture's temperature in the reactor. The proposed technology provides a high rate of hydrogen production (approximately 144.5 ton/hr of standard H2), also up to 25% of the original natural gas, in line with existing SMR technology for preparing and heating steam and gas mixtures will be saved. Also, exergy analysis results show that the plant's efficiency reaches 78.5% using HTR heat for combined hydrogen and power generation.

대면적 고분자전해질 연료전지의 데드엔드 운전 (Dead-end Mode Operation of a Large Scale PEM Fuel Cell Stack)

  • 정지훈;신현길;한인수;서하규;김민성;조성백;허태욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.83.1-83.1
    • /
    • 2010
  • A Dead-end mode operation is one of the best way to maximize the gas usage rate. But, some components of fuel cell stack like gas diffusion layer(GDL) or membrane can be damaged in dead-end mode operation. In this study, a Large Scale Polymer electrolyte membrane fuel cell(PEMFC) for a dead-end operation has been developed. The stack is composed with 4 cells which has over 400cm2 of active area. Hydrogen is used as a fuel, and oxygen is used as a oxidant. The dead-end operation performance was evaluated by a long-term dead-end mode operation. The fuel cell stack is operated over 1,500 hours in dead-end mode operating fuel cell test station. And the performance change of the fuel cell stack was investigated.

  • PDF

Understanding Role of Precursor (Crystal Violet) and its Polarity on MoS2 Growth; A First Principles Study

  • Ramzan, Muhammad Sufyan;Kim, Yong Hoon
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.373-376
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) such as $MoS_2$ is the thinnest semiconductor, exhibits promising prospects in the applications of optoelectronics, catalysis and hydrogen storage devices. Uniform and high quality $MoS_2$ is highly desirable in large area for its applications on commercial scale and fundamental research. Many experimental techniques i.e CVD have been developed to successfully synthesis $MoS_2$ on large scale, here in this work atomistic detail to understand the growth mechanism is addressed which was greatly overlooked. Here based on first principles calculation we found that polarity of seeding promter (crystal violet considerd in this work) controls the growth mechanism. It is also found that molybdenum destroys the precursor while sulfur adsorption with precursor is favorable.

  • PDF

Development of RF Ion Source for Neutral Beam Injector in Fusion Devices

  • 장두희;박민;김선호;정승호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.550-551
    • /
    • 2013
  • Large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER plasmas. Negative hydrogen (deuterium) ion sources are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck- Institute for Plasma Physics, Garching) for ASDEX-U and W7-AS neutral beam injection (NBI) systems. In recent, the first NBI system (NBI-1) has been developed successfully for the KSTAR. The first and second long-pulse ion sources (LPIS-1 and LPIS-2) of NBI-1 system consist of a magnetic bucket plasma generator with multi-pole cusp fields, filament heating structure, and a set of tetrode accelerators with circular apertures. There is a development plan of large-area RF ion source at KAERI to extract the positive ions, which can be used for the second NBI (NBI-2) system of KSTAR, and to extract the negative ions for future fusion devices such as ITER and K-DEMO. The large-area RF ion source consists of a driver region, including a helical antenna (6-turn copper tube with an outer diameter of 6 mm) and a discharge chamber (ceramic and/or quartz tubes with an inner diameter of 200 mm, a height of 150 mm, and a thickness of 8 mm), and an expansion region (magnetic bucket of prototype LPIS in the KAERI). RF power can be transferred up to 10 kW with a fixed frequency of 2 MHz through a matching circuit (auto- and manual-matching apparatus). Argon gas is commonly injected to the initial ignition of RF plasma discharge, and then hydrogen gas instead of argon gas is finally injected for the RF plasma sustainment. The uniformities of plasma density and electron temperature at the lowest area of expansion region (a distance of 300 mm from the driver region) are measured by using two electrostatic probes in the directions of short- and long-dimension of expansion region.

  • PDF

수소 충전소 최적 위치 선정을 위한 기계 학습 기반 방법론 (A Machine Learning based Methodology for Selecting Optimal Location of Hydrogen Refueling Stations)

  • 김수환;류준형
    • Korean Chemical Engineering Research
    • /
    • 제58권4호
    • /
    • pp.573-580
    • /
    • 2020
  • 최근 석유를 대체할 수송 에너지원으로 수소에 대한 관심이 커지고 있다. 수소의 장점을 극대화하기 위해서는 수소 충전소가 많이 보급되어야 한다. 본 논문은 수소 충전소를 보다 가깝게 이용 할 수 있는 최적 위치 선정 방법론을 제안하였다. 기존 에너지의 공급처인 주유소와 천연가스 충전소의 위치를 우선 참고하고, 인구, 등록 차량 수 등의 데이터를 추가 반영하여 수소자동차의 예상 충전 수요를 계산하였다. 기계 학습(machine learning) 기법 중 하나인 k-중심자 군집화(k-medoids Clustering)를 이용하여 예상 수요에 대응하는 최적 수소 충전소 위치를 계산하였다. 제안된 방법의 우수성은 서울의 사례를 통해 수치적으로 설명하였다. 본 방법론과 같은 데이터 기반 방법은 향후 수소의 보급 속도를 높여 환경친화적인 경제 체계를 구축하는데 기여할 수 있을 것이다.

다공성 탄소계 재료를 이용한 수소저장 기술 (Hydrogen Storage Technology by Using Porous Carbon Materials)

  • 이영석;임지선
    • 공업화학
    • /
    • 제20권5호
    • /
    • pp.465-472
    • /
    • 2009
  • 본 총설에서는 최근 주로 연구되고 있는 활성탄, 탄소나노튜브, 팽창 흑연 및 활성 탄소 섬유 등 다공성 탄소재료를 중심으로 수소 저장량을 증대시키기 위한 기술 및 기 발표된 수소저장량과 그 장 단점에 대하여 고찰하였다. 수소저장능을 향상시키기 위한 탄소 내 기공의 최적의 크기는 0.6~0.7 nm로 조사되었다. 촉매의 경우 전이금속 및 그 금속산화물이 많이 이용되었으며, 주로 다공성 탄소재료에 도핑을 통해 수소저장능을 향상시켰다. 수소저장 매체인 다공성 탄소재료 중에서 활성탄은 대량생산이 가능하여 가격이 비교적 저렴한 장점이 있고 탄소나노튜브는 튜브의 튜브간 공간 외에도 내부공간에 수소를 저장할 수 있는 공간이 수소저장에 활용될 수 있다는 장점이 있다. 팽창 흑연은 흑연의 층 사이에 알칼리 금속의 삽입 시 층간 거리가 팽창하여 수소저장에 용이하고, 활성탄소섬유는 높은 비표면적과 발달된 미세기공이 수소흡착에 크게 기여한다는 점이 있다. 이러한 기존의 연구로 고려해 볼 때 다공성 탄소재료는 아직 달성되지 못한 DOE의 수소저장 목표치에 도달하기 위한 주요 유망한 후보재료 중의 하나이다.