Toward a Self-Consistent Simulation of the Cosmic Reionization

  • Published : 2010.04.06

Abstract

Ionization of hydrogen occurs globally in our universe. The epoch of this cosmic reionization may be probed by various observations, among which the 21cm observation of neutral hydrogen at high redshift is the most promising candidate. In order to provide a mock data, we have performed the first, self-consistent simulation of cosmic reionization. We account for all possible UV-radiating sources which reside in halos ranging from minihalos to atomically-cooling halos. In order to simulate the contribution from Pop III objects, we also calculate the radiative transfer of Lyman-Werner radiation and apply a suppression criterion for Pop III objects. Our priliminary result indicates that Pop III objects ionize the universe at very high redshift and create rich, small-scale bubble structure, while sources in atomically-cooling halos ionize the universe at relatively low redshift and create large-scale bubble structure. We discuss how these two different scales and epoch may be probed by future 21cm observations.

Keywords