• Title/Summary/Keyword: Large optics

Search Result 351, Processing Time 0.024 seconds

Multilayered High-directional Waveguide Grating Antenna Based on Interleaved Etching for Optical Phased Arrays

  • Yang Bo;Qing Wang;Jinyu Wang;Yan, Cai;Wencheng Yue;Shuxiao Wang;Wei Wang;Mingbin Yu
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.157-165
    • /
    • 2023
  • We propose a highly directional waveguide grating antenna for an optical phased array, achieving high directionality of more than 97% by interleaving the trenches with different etching depths in the silicon nitride layer, and adopting a multilayered structure. Meanwhile, the multilayered structure reduces the perturbation strength, which enables a centimeter-scale radiation length. The beam-steering range is 13.2°, with a wavelength bandwidth of 100 nm. The 1-dB bandwidth of the grating is 305 nm. The multilayered grating structure has a large tolerance to the fabrication variation and is compatible with CMOS fabrication techniques.

A Wide-field-of-view Table-ornament Display Using Electronic Holography

  • Daerak Heo;Hosung Jeon;Sungjin Lim;Joonku Hahn
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.183-190
    • /
    • 2023
  • Three-dimensional (3D) displays provide a significant advantage over traditional 2D displays by offering realistic images, and table-style displays in particular are ideal for generating 3D images that appear to float above a table. These systems are based on multiview displays, and are typically operated using temporal or spatial multiplexing methods to expand the viewing zone (VZ). The VZ is an expanded space that results from merging the sub-viewing zones (SVZs) from which an individual view is made. To increase the viewing angle, many SVZs are usually required. In this paper, we propose a table-ornament electronic holographic display that utilizes 3f parabolic mirrors. In holography, the VZ is not simply expanded but synthesized from SVZs to implement continuous motion parallax. Our proposed system is small enough to be applied as a table ornament, in contrast to traditional tabletop displays that are large and not easily portable. By combining multiview and holographic technologies, our system achieves continuous motion parallax. Specifically, our system projects 340 views using a time-multiplexing method over a range of 240 degrees.

Environment-dependent Broadband Perfect Absorption of Metal-insulator-metal Metamaterial Systems

  • Feng Li;Yulong Tang;Qingsong Peng;Guosheng Hu
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.136-146
    • /
    • 2023
  • Based on calculations using the macroscopic Maxwell's equations with mesoscopic boundary conditions, light absorption by a layered metal-insulator-metal (MIM) metamaterial system embedded in three different environments is investigated. Increasing the top metal thickness shifts the broad absorption band to lower dielectric-constant regions and longer wavelengths, for either TM or TE waves. Boosting the dielectric-layer thickness redshifts the broadband absorption to regions of larger dielectric constant. In air, for the dielectric-constant range of 0.86-3.40, the absorption of the system exceeds 98% across 680-1,033 nm. In seawater with optimized dielectric constant, ≥94% light absorption over 400-1,200 nm can be achieved; particularly in the wavelength range of 480-960 nm and dielectric-constant range of 0.82-3.50, the absorption is greater than 98%. In an environment with even higher refractive index (1.74), ≥98% light absorption over 400-1,200 nm can be achieved, giving better performance. The influence of angle of incidence on light absorption of the MIM system is also analyzed, and the angle tolerance for ≥90% broadband absorption of a TM wave is up to 40° in an environment with large refractive index. While the incident-angle dependence of the absorption of a TE wave is nearly the same for different circumstances, the situation is different for a TM wave.

Optimal Design of a Coudé Mirror Assembly for a 1-m Class Ground Telescope

  • Jaehyun Lee;Hyug-Gyo Rhee;Eui Seung Son;Jeon Geon Kang;Ji-Young Jeong;Pilseong Kang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.435-442
    • /
    • 2023
  • These days, the size of a reflective telescope has been increasing for astronomical observation. An additional optical system usually assists a large ground telescope for image analysis or the compensation of air turbulence. To guide collimated light to the external optical system through a designated path, a coudé mirror is usually adopted. Including a collimator, a coudé mirror of a ground telescope is affected by gravity, depending on the telescope's pointing direction. The mirror surface is deformed by the weight of the mirror itself and its mount, which deteriorates the optical performance. In this research, we propose an optimization method for the coudé mirror assembly for a 1-m class ground telescope that minimizes the gravitational surface error (SFE). Here the mirror support positions and the sizes of the mount structure are optimized using finite element analysis and the response surface optimization method in both the horizontal and vertical directions, considering the telescope's altitude angle. Throughout the whole design process, the coefficients of the Zernike polynomials are calculated and their amplitude changes are monitored to determine the optimal design parameters. At the same time, the design budgets for the thermal SFE and the mass and size of the mount are reflected in the study.

Volume-sharing Multi-aperture Imaging (VMAI): A Potential Approach for Volume Reduction for Space-borne Imagers

  • Jun Ho Lee;Seok Gi Han;Do Hee Kim;Seokyoung Ju;Tae Kyung Lee;Chang Hoon Song;Myoungjoo Kang;Seonghui Kim;Seohyun Seong
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.545-556
    • /
    • 2023
  • This paper introduces volume-sharing multi-aperture imaging (VMAI), a potential approach proposed for volume reduction in space-borne imagers, with the aim of achieving high-resolution ground spatial imagery using deep learning methods, with reduced volume compared to conventional approaches. As an intermediate step in the VMAI payload development, we present a phase-1 design targeting a 1-meter ground sampling distance (GSD) at 500 km altitude. Although its optical imaging capability does not surpass conventional approaches, it remains attractive for specific applications on small satellite platforms, particularly surveillance missions. The design integrates one wide-field and three narrow-field cameras with volume sharing and no optical interference. Capturing independent images from the four cameras, the payload emulates a large circular aperture to address diffraction and synthesizes high-resolution images using deep learning. Computational simulations validated the VMAI approach, while addressing challenges like lower signal-to-noise (SNR) values resulting from aperture segmentation. Future work will focus on further reducing the volume and refining SNR management.

Optical Design of an Omnidirectional Illumination System Using an Ultra Wide Converter (초광각 변환기를 이용한 전방위 조명 광학계의 설계)

  • Juho Lee;Jae Myung Ryu
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.1
    • /
    • pp.18-23
    • /
    • 2024
  • In exhibition spaces such as art museums, lighting should primarily illuminate the walls where exhibits are displayed rather than the floor. Commonly used LED lighting consists of an LED and a diffusion plate that closely resembles a Lambertian light source with uniform light distribution at every angle. This type of illumination focuses on the floor surface where normal incidence occurs. Consequently, this general illumination method is not well-suited for effectively lighting the wall surface. Specifically, to illuminate a wall, it is necessary to increase the light intensity in areas with a large incident angle in the light distribution. In response to this issue, our study proposes an illumination system that uses an ultra wide converter to adjust the divergence angle from the light source to 180 degrees.

Design of a Light and Small Dual-band Airborne Despun Optical System

  • Luqing Zhang;Ning Zhang;Xiping Xu;Kailin Zhang;Yue Zhang;Jiachong Li
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.97-104
    • /
    • 2024
  • In aerial cameras, image quality is easily affected by weather, temperature, and the attitude of the aircraft. Aiming at this phenomenon, based on the theory of two-step zoom optical systems, a dual-band optical-despun two-step zoom optical system is designed. The system has a small field of view of 2.00° × 1.60°, and a large field of view of 4.00° × 3.20°. In the zoom process, the wavelength range is 0.45-0.70 ㎛ and 0.75-1.10 ㎛, and the size of the optical system is 168 mm (L) × 90 mm (W) × 60 mm (H). The overall lens weight is only 170.8 g, which has advantages for miniaturization and light weight. At the Nyquist frequency of 104 lp/mm, the modulation transfer function of the visible-light optical system is more than 0.44, and that of the near-infrared optical system is more than 0.30, both of which have good imaging quality and tolerance characteristics in the range of -45 to 60 ℃.

Covered Microlens Structure for Quad Color Filter Array of CMOS Image Sensor

  • Jae-Hyeok Hwang;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.485-495
    • /
    • 2023
  • The pixel size in high-resolution complementary metal-oxide-semiconductor (CMOS) image sensors continues to shrink due to chip size limitations. However, the pixel pitch's miniaturization causes deterioration of optical performance. As one solution, a quad color filter (CF) array with pixel binning has been developed to enhance sensitivity. For high sensitivity, the microlens structure also needs to be optimized as the CF arrays change. In this paper, the covered microlens, which consist of four microlenses covered by one large microlens, are proposed for the quad CF array in the backside illumination pixel structure. To evaluate the optical performance, the suggested microlens structure was simulated from 0.5 ㎛ to 1.0 ㎛ pixels at the center and edge of the sensors. Moreover, all pixel structures were compared with and without in-pixel deep trench isolation (DTI), which works to distribute incident light uniformly into each photodiode. The suggested structure was evaluated with an optical simulation using the finite-difference time-domain method for numerical analysis of the optical characteristics. Compared to the conventional microlens, the suggested microlens show 29.1% and 33.9% maximum enhancement of sensitivity at the center and edge of the sensor, respectively. Therefore, the covered microlens demonstrated the highly sensitive image sensor with a quad CF array.

A Novel RFID Dynamic Testing Method Based on Optical Measurement

  • Zhenlu Liu;Xiaolei Yu;Lin Li;Weichun Zhang;Xiao Zhuang;Zhimin Zhao
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • The distribution of tags is an important factor that affects the performance of radio-frequency identification (RFID). To study RFID performance, it is necessary to obtain RFID tags' coordinates. However, the positioning method of RFID technology has large errors, and is easily affected by the environment. Therefore, a new method using optical measurement is proposed to achieve RFID performance analysis. First, due to the possibility of blurring during image acquisition, the paper derives a new image prior to removing blurring. A nonlocal means-based method for image deconvolution is proposed. Experimental results show that the PSNR and SSIM indicators of our algorithm are better than those of a learning deep convolutional neural network and fast total variation. Second, an RFID dynamic testing system based on photoelectric sensing technology is designed. The reading distance of RFID and the three-dimensional coordinates of the tags are obtained. Finally, deep learning is used to model the RFID reading distance and tag distribution. The error is 3.02%, which is better than other algorithms such as a particle-swarm optimization back-propagation neural network, an extreme learning machine, and a deep neural network. The paper proposes the use of optical methods to measure and collect RFID data, and to analyze and predict RFID performance. This provides a new method for testing RFID performance.

Clinical Estimation of Corrected State with Change in Vertex Distance (정점간거리 변화에 따른 교정상태의 임상 평가)

  • Kim, Jung-Hee;Lee, Hak-Jun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • Purpose: This study was conducted to estimate the changes of corrected diopter and corrected visual acuity with the change in vertex distance. Also we aimed to provide basic data for refraction test. Methods: Using the trial lens, we measured the corrected diopter and corrected visual acuity after performing binocular balance test. We measured the changes of corrected diopter and corrected visual acuity in change of vertex distance. We analyzed statistical significance and relations between vertex distance and corrected diopter and corrected visual acuity. Results: There was no difference in corrected diopter with the change of vertex distance within -1.00D, but the corrected diopter increased with it over - 1.25D. In particular, the change of diopter was largest when the vertex distance increased 15 mm. At over 11.00D, there was large changes of diopter with the changes of vertex distance at 5 mm, 10 mm and 15 mm. On correlation analysis between the vertex distance and the corrected diopter, there was strong correlation (r=0.999 at 5 mm increase of vertex distance, r=0.982 at 10 mm increase and r=0.957 at 15 mm increase) and also there was significant (p<0.01). At the change of visual acuity in increased of vertex distance, the range of a decrease in visual acuity was large when the changes of vertex distance was largest. On correlation analysis between the vertex distance and the corrected visual acuity, there was strong correlation (r=0.969 at 5 mm increase of vertex distance, r=0.985 at 10 mm increase and r=0.994 at 15 mm increase) and also there was significant (p<0.01). Conclusions: The vertex distance was very important at the refraction test and at wearing spectacle. On correlation analysis between the vertex distance and the corrected diopter, and the corrected visual acuity, there was strong correlation and statistically significant. Therefore, the vertex distance should be kept at the refraction using trial lens, and the best fitting was made not to slipping forward, and so we suggested regular refitting of spectacle and the managing method of spectacle were educated to the spectacle wearers.