• 제목/요약/키워드: Large motion

검색결과 1,548건 처리시간 0.026초

불규칙파 중 초대형 부유식 해양 구조물에 대한 운동 해석 (Motion Analysis of a Very Large Floating Structure in Irregular Waves)

  • 신현경;이호영;임춘규;신현수;박인규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.63-68
    • /
    • 2000
  • A very large floating structure has rather small motion characteristics as to the whole body, while the motion at end part of such structure becomes largest due to the elastic motion of the structure. This paper presents on the theoretical result on the relative motion characteristics and green water phenomena of VLFS in waves This phenomena affect not only to strength of the structure but also the determination of depth of structure. To predict motion responses of structure in regular waves, the source-dipole distribution method and F.E.M is used By irregular wave results, the probability of occurrence of green water and response of the structure were calculated.

  • PDF

탐색 영역의 적응적 이동에 관한 연구 (A Study on Adaptive Moving Method of Search Region)

  • 김진태;이석호;최종수
    • 전자공학회논문지B
    • /
    • 제31B권8호
    • /
    • pp.129-136
    • /
    • 1994
  • In this paper an adaptive moving method of the search region tracking the motion is proposed. The search region in BMA is determined by the capability of hardware implementation and the degree of motion. But once determined nothing can be changed during coding procedure. In this paper we predict the level of motion of the current block using motion vectors of previous frames without overhead information and change the location of the search region according to the level of the motion predicted. In short the proposed method can be archieved the dsirable effect such that the size of search region gets large when the motion is large. Results of experiments show that prediction efficiency has been improved by using adaptive moving method resulting in reduced prediction error in the blocks with large motion.

  • PDF

Evaluation of Dynamic Characteristics for a Submerged Body with Large Angle of Attack Motion via CFD Analysis

  • Jeon, Myungjun;Mai, Thi Loan;Yoon, Hyeon Kyu;Ryu, Jaekwan;Lee, Wonhee;Ku, Pyungmo
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.313-326
    • /
    • 2021
  • A submerged body with varied control inputs can execute large drift angles and large angles of attack, as well as basic control such as straight movement and turning. The objective of this study is to analyze the dynamic characteristics of a submerged body comprising six thrusters and six control planes, which is capable of a large drift angle and angle of attack motion. Virtual captive model tests via were analyzed via computational fluid dynamics (CFD) to determine the dynamic characteristics of the submerged body. A test matrix of virtual captive model tests specialized for large-angle motion was established. Based on this test matrix, virtual captive model tests were performed with a drift angle and angle of attack of approximately 30° and 90°, respectively. The characteristics of the hydrodynamic force acting on the horizontal and vertical surfaces of the submerged body were analyzed under the large-angle motion condition, and a model representing this hydrodynamic force was established. In addition, maneuvering simulation was performed to evaluate the standard maneuverability and dynamic characteristics of large-angle motion. Considering the shape characteristics of the submerged body, we attempt to verify the feasibility of the analysis results by analyzing the characteristics of the hydrodynamic force when the large-angle motion occurred.

중첩 격자계를 이용한 물체운동의 수치 시뮬레이션 (Numerical Simulation of Body Motion Using a Composite Grid System)

  • 박종천;전호환;송기종
    • 대한조선학회논문집
    • /
    • 제40권5호
    • /
    • pp.36-42
    • /
    • 2003
  • A CFD simulation technique has been developed to handle the unsteady body motion with large amplitude by use of overlapping multi-block grid system. The three-dimensional, viscous and incompressible flow around body is investigated by solving the Navier-Stokes equations, and the motion of body is represented by moving effect of the grid system. Composite grid system is employed in order to deal with both the body motion with large amplitude and the condition of numerical wave maker in convenience at the same time. The governing equations, Navier-Stokes (N-S) and continuity equations, are discretized by a finite volume method, in the framework of an O-H type boundary-fitted grid system (inner grid system including test model) and a rectangular grid system (outer grid system including simulation equipments for generation of wave environments). If this study, several flow configurations, such as an oscillating cylinder with large KC number, are studied in order to predict and evaluate the hydrodynamic forces. Furthermore, the motion simulation of a Series 60 model advancing in a uniform flow under the condition of enforced roll motion of angle 20$^{\circ}$ is performed in the developed numerical wave tank.

범함수 정의역 분할에 바탕을 둔 비선형 계층적 움직임 추정기법 (Nonlinear hierarchical motion estimation method based on decompositionof the functional domain)

  • 심동규;박래홍
    • 한국통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.807-821
    • /
    • 1996
  • In this paper, we proposed a nonlinear hierarchical mtion estimation method. Generally, the conventional hierarchical motion estimation methods have been proposed for fast convergence and detection of large motions. But they have a common drawback that large error in motion estimation is propapated across motion discontinuities. This artifiact is due to the constriaint of motion continuity and the linear interpolation of motion vectors between hierarchical levels. In this paper, we propose an effective hierarchical motion estimation mechod that is robust to motion discontinuities. The proposed algorithm is based on the decomposition of the functional domain for optimizing the intra-level motion estimation functional. Also, we propose an inter-level nonlinear motion estimation equation rather than using the conventional linearprojection scheme of motion field. computer simulations with several test sequences show tht the proposed algorithm performs better than several conventional methods.

  • PDF

A NOTE ON FUNCTIONAL LIMIT THEOREM FOR THE INCREMENTS OF FBM IN SUP-NORM

  • Hwang, Kyo-Shin
    • East Asian mathematical journal
    • /
    • 제24권3호
    • /
    • pp.275-287
    • /
    • 2008
  • In this paper, using large deviation results for Gaussian processes, we establish some functional limit theorems for increments of a fractional Brownian motion in the usual sup-norm via estimating large deviation probabilities for increments of a fractional Brownian motion.

  • PDF

강건 절점위치 유한요소법을 이용한 수중 예인 케이블의 비선형 거동해석 (Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method)

  • 이은택;고광수;안형택;김성일;천승용;김정석;이병희
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.388-399
    • /
    • 2016
  • A motion analysis of an underwater towed cable is a complex task due to its nonlinear nature of the problem. The major source of the nonlinearity of the underwater cable analysis is that the motion of the cable involves large rigid-body motion. This large rigid-body motion makes difficult to use standard displacement-based finite element method. In this paper, the authors apply recently developed nodal position-based finite element method which can deal with the geometric nonlinearity due to the large rigid-body motion. In order to enhance the stability of the large-scale nonlinear cable motion simulation, an efficient time-integration scheme is proposed, namely predictor/multi-corrector Newmark scheme. Three different predictors are introduced, and the best predictor in terms of stability and robustness for impulsive cable motion analysis is proposed. As a result, the nonlinear motion of underwater cable is predicted in a very efficient manner compared to the classical finite element of finite difference methods. The efficacy of the method is demonstrated with several test cases, involving static and dynamic motion of a single cable element, and also under water towed cable composed of multiple cable elements.

MATHEMATICAL ANALYSIS USING TWO MODELING TECHNIQUES FOR DYNAMIC RESPONSES OF A STRUCTURE SUBJECTED TO A GROUND ACCELERATION TIME HISTORY

  • Kim, Yong-Woo;Jhung, Myung-Jo
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.361-374
    • /
    • 2011
  • Two types of numerical modeling techniques were considered for the dynamic response of a structure subjected to a ground acceleration. One technique is based on the equation of motion relative to ground motion, and the other is based on the equation of absolute motion of the structure and the ground. The analytic background of the former is well established while the latter has not yet been extensively verified. The latter is called a large mass method, which allocates an appropriate large mass to the ground so that it causes the ground to move according to a given acceleration time history. In this paper, through the use of a single degree-of-freedom spring-mass system, the equations of motion of the two techniques were analyzed and useful theorems are provided on the large mass method. Using simple examples, the numerical results of the two modeling techniques were compared with analytic solutions. It is shown that the theorems provide a clear insight on the large mass method.

공간 상관성을 이용한 적응적 움직임 추정 알고리즘 (An Adaptive Motion Estimation Algorithm Using Spatial Correlation)

  • 박상곤;정동석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.43-46
    • /
    • 2000
  • In this paper, we propose a fast adaptive diamond search algorithm(FADS) for block matching motion estimation. Fast motion estimation algorithms reduce the computational complexity by using the UESA (Unimodal Error Search Assumption) that the matching error monotonically increases as the search moves away from the global minimum error. Recently many fast BMAs(Block Matching Algorithms) make use of the fact that the global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the adjacent blocks. We change the origin of search window according to the spatially adjacent motion vectors and their MAE(Mean Absolute Error). The computer simulation shows that the proposed algorithm has almost the same computational complexity with UCBDS(Unrestricted Center-Biased Diamond Search)〔1〕, but enhance PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS(Full Search), even for the large motion case, with half the computational load.

  • PDF

움직임 해석을 통한 고속 움직임 예측 알고리즘 (A Fast Motion Estimation Algorithm with Motion Analysis)

  • 전영현;윤종호;조화현;최명렬
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.339-342
    • /
    • 2005
  • We present an efficient block-based motion estimation algorithm with motion analysis. The motion analysis determines a size of search pattern and a maximum repeated count of search pattern. In case of large movement in large image, we reduce search points and the local minimum which caused by low performance. The proposed algorithm employs with searching step of 2. The first step determines an initial search point with neighbor block vector and a size of initial search pattern. The second step determines a size of search pattern and a maximum repeated count with motion analysis. We improve motion prediction accuracy while reducing required computational complexity compared to other fast block-based motion estimation algorithms.

  • PDF