• 제목/요약/키워드: Large Static Deformation

검색결과 136건 처리시간 0.023초

Static behavior of Kiewitt6 suspendome

  • Li, Kena;Huang, Dahai
    • Structural Engineering and Mechanics
    • /
    • 제37권3호
    • /
    • pp.309-320
    • /
    • 2011
  • As a new type of large-span space structure, suspendome is composited of the upper single-layer reticulated shell and the lower cable-strut system. It has better mechanical properties compared to single-layer reticulated shell, and the overall stiffness of suspendome structure increases greatly due to the prestress of cable. Consequently, it can cross a larger span reasonably, economically and grandly with high rigidity, good stability and simple construction. For a better assessment of the advantages of mechanical characteristic of suspendome quantitatively, the static behavior of Kiewitt6 suspendome was studied by using finite element method, and ADINA was the software application to implement the analysis. By studying a certain suspendome, the internal forces, deformation and support constrained forces of the structure were obtained in this paper. Furthermore, the influences of parameters including prestress, stay bar length, cross-sectional area and rise-to-span ratio were also discussed. The results show that the increase of prestress and vertical stay bar length can improve the stiffness of suspendome; Cross-sectional area has nearly no impact on the static behavior, and the rise-to-span ratio is the most sensitive parameter.

Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation

  • Mohamed, Nazira;Eltaher, Mohamed A.;Mohamed, Salwa A.;Seddek, Laila F.
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.737-750
    • /
    • 2019
  • This paper investigates the static and dynamic behaviors of imperfect single walled carbon nanotube (SWCNT) modeled as a beam structure by using energy-equivalent model (EEM), for the first time. Based on EEM Young's modulus and Poisson's ratio for zigzag (n, 0), and armchair (n, n) carbon nanotubes (CNTs) are presented as functions of orientation and force constants. Nonlinear Euler-Bernoulli assumptions are proposed considering mid-plane stretching to exhibit a large deformation and a small strain. To simulate the interaction of CNTs with the surrounding elastic medium, nonlinear elastic foundation with cubic nonlinearity and shearing layer are employed. The equation governed the motion of curved CNTs is a nonlinear integropartial-differential equation. It is derived in terms of only the lateral displacement. The nonlinear integro-differential equation that governs the buckling of CNT is numerically solved using the differential integral quadrature method (DIQM) and Newton's method. The linear vibration problem around the static configurations is discretized using DIQM and then is solved as a linear eigenvalue problem. Numerical results are depicted to illustrate the influence of chirality angle and imperfection amplitude on static response, buckling load and dynamic behaviors of armchair and zigzag CNTs. Both, clamped-clamped (C-C) and simply supported (SS-SS) boundary conditions are examined. This model is helpful especially in mechanical design of NEMS manufactured from CNTs.

Study on aerodynamic coefficients and responses of the integrated catwalk of Halogaland Bridge

  • Wan, Jia-wei;Wang, Qi;Liao, Hai-li;Li, Ming-shui
    • Wind and Structures
    • /
    • 제25권3호
    • /
    • pp.215-232
    • /
    • 2017
  • Wind tunnel tests and numerical aerodynamic analyses were conducted for an integrated catwalk structure under strong winds. From the wind tunnel tests, it is found that the aerodynamic coefficients were different from those of the typical type. The drag coefficient was larger than typical and was sensitive to number of vertical meshes installed rather than the solidity ratio. Comparing with typical catwalk, the integrated one showed larger deformation under strong wind, and the large torsional deformation are mainly caused by drag force. It did not show aerodynamic divergence even the torsional deformation reaching $20^{\circ}$. The reason could be that the stiffness is smaller and thus the catwalk is able to deform to the shape compactable with higher loading. Considering safety for construction, storm rope system is introduced to the catwalk to reduce the deformation to acceptable level.

$CaCO_3$ / PP 입자 강화 복합재료의 온도변화에 따른 파괴기구 (Temperature Dependent Failure Machanisms of CaCO3 / PP Particulates)

  • 고성위;김형진
    • 수산해양기술연구
    • /
    • 제30권3호
    • /
    • pp.220-226
    • /
    • 1994
  • In this paper the failure mechanisms of polypropylene resin composites filled with calcium carbonate particulates have been studied in the temperature range $-50^{\circ}C$ to $-50^{\circ}C$ The fillers used are both untreated and surface treated with stearic acid. The impact fracture toughness is evaluated from the impact energy absorbed divided by the uncut ligament area of the specimen. Impact fracture toughness increases as temperature is raised whether the fillers are coated or not. The static fracture toughness of these particular composites is evaluated based on the linear clastic fracture toughness of these particular composites is evaluated based on the linear clastic fracture mechanics. Static fracture toughess decreases with increasing temperature whether the fillers are coated or not. An extended stress whitened zone are observed through a large number of availabel sites for cavitation/debonding along particle matrix interface and matrix deformation.

  • PDF

6절점 2차원 Isoparametric요소의 가우스적분점 수정에 관하여 -선형, 비선형의 정적 및 동적 굽힘해석- (On the Modification of Gauss Integral Point of 6 Node Two Dimensional Isoparametric Element -Linear and Nonlinear Static and Dynamic Bending Analyses-)

  • 김정운;정래훈;권영두
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3007-3019
    • /
    • 1993
  • For the same configuration, the stiffness of 6-node two dimensional isoparametric is stiffer than that of 8-node two dimensional isoparametric element. This phenomenon may be called 'Relative Stiffness Stiffening Phenomenon.' In this paper, the relative stiffness stiffening phenomenon was studied, and could be corrected by modifying the position of Gauss integral points used in the numerical integration of the stiffness matrix. For the same deformation (bending) energy of 6-node and 8-node two dimensional isoparametric elements, Gauss integral points of 6-node element have to move closer, in comparison with those of 8-node element, in the case of numerical integration along the thickness direction.

Brief and accurate analytical approximations to nonlinear static response of curled cantilever micro beams

  • Sun, Youhong;Yu, Yongping;Liu, Baochang
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.461-472
    • /
    • 2015
  • In this paper, the nonlinear static response of curled cantilever beam actuators subjected to the one-sided electrostatic field is focused on. By assuming the deflection function of electrostatically actuated beam, analytical approximate solutions are established via using Galerkin method to solve the equilibrium equation. The Pull-In voltages which determine the stability of the curled beam actuators are also obtained. These approximate solutions show excellent agreements with numerical solutions obtained by the shooting method and the experimental data for a wide range of beam length. Expressions of these analytical approximate solutions are brief and could easily be used to derive the effects of various physical parameters on MEMS structures.

SEISMIC STABILITY OF SATURATED REINFORCED SOIL WALLS

  • Kuwano, Jiro;Izawa, Jun
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.66-71
    • /
    • 2010
  • This paper studies the effect of saturation of backfill on the seismic stability of reinforced soil walls (RSWs) using centrifuge shaking table tests. For comparison, degradation of static stability and seismic stability of a RSW under unsaturated condition was also investigated. Test results showed that the RSW under saturated condition had enough static stability. However, seismic stability of saturated RSW significantly decreased as compared with that under unsaturated condition. The saturated model RSW did not collapse, though it showed large deformation. It maintained sufficient stability after shakings although a clear slip surface appeared in the backfill. Finally, it is discussed how to evaluate residual stability of RSWs damaged by earthquakes with test results and the simple evaluation method proposed by authors.

  • PDF

수치미분을 이용한 고무의 유한요소 해석시 수렴성 연구 (A Study on the Convergency of the Finite Element Analysis of Rubber Using Numerical Differentiation Mehthod)

  • 권영두;노권택;이창섭;홍상표
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.141-153
    • /
    • 1999
  • A finite element procedure for the analysis of rubber-like hyperelastic material is developed. The volumetric incompressiblity conditions of the rubber deformation is included in the formulation by using penalty method. In this paper, the behavior of the rubber deformation is represented by hyperelastic constitutive relations based on a generalized Mooney-Rivlin model. The principle of virtual work is used to derive nonlinear finite element equation for the large displacement problem and presented in total-Lagrangian description. The finite element procedure using analytic differentiation resulted in very close solution to the result of the well known commercial packages NISAII AND ABAQUS. Numerical tests show that the results from the numerical differentiation method coincide very well with those from the analytic method and the well known commercial packages in static analysis. The convergency of rubber usingν iteration method is also discussed.

  • PDF

Nonlinear thermoelastic response of laminated composite conical panels

  • Joshi, R.M.;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • 제34권1호
    • /
    • pp.97-107
    • /
    • 2010
  • Nonlinear thermoelastic static response characteristics of laminated composite conical panels are studied employing finite element approach based on first-order shear deformation theory and field consistency principle. The nonlinear governing equations, considering moderately large deformation, are solved using Newton-Raphson iterative technique coupled with the adaptive displacement control method to efficiently trace the equilibrium path. The validation of the formulation for mechanical and thermal loading cases is carried out. The present results are found to be in good agreement with those available in the literature. The adaptive displacement control method is found to be capable of handling problems with multiple snapping responses. Detailed parametric study is carried out to highlight the influence of semicone angle, boundary conditions, radius-to-thickness ratio and lamination scheme on the nonlinear thremoelastic response of laminated cylindrical and conical panels.

셀프 센터링이 가능한 디스크 스프링 브레이스의 이력특성에 관한 연구 (A Study on the Hysteretic Characteristics of Self-Centering Disc Spring Brace)

  • 박병태;신동현
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.89-96
    • /
    • 2023
  • The seismic retrofits of existing structures have been focused on the control of structural responses which can be achieved by providing displacement capacity through inelastic ductile action at supplemental devices. Due to their hysteretic characteristics, it is expected to sustain damage through repeated inelastic behaviors including residual deformation which might increase repair costs. To solve such drawbacks of existing yielding devices, this study proposes a self-centering disc spring brace that sustains large axial deformation without structural damage while providing stable energy dissipation capacity. The hysteretic behaviors of suggested brace are first investigated based on the quasi-static cyclic test procedure. Experimental results present the effective self-centering behavior and an analytical model is then suggested in order to reasonably capture the flag-shaped hysteretic behavior of the disc spring brace.