• Title/Summary/Keyword: Large Static Deformation

Search Result 136, Processing Time 0.022 seconds

Analysis of Flexible Media: I. Static and Dynamic Analysis (유연매체의 거동해석: I. 정.동적 거동해석)

  • Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1253-1258
    • /
    • 2007
  • The media transport systems, such as printers, copy machines, facsimiles, ATMs, cameras, etc. have been widely used and being developed rapidly. In the development of those sheet-handling machineries, it is important to predict the static and dynamic behavior of the sheet with a high degree of reliability because the sheets are fed and stacked at such a high speed. Flexible media are very thin, light and flexible, so they behave in geometric nonlinearity with large displacement and large rotation but small strain. In the flexible media analysis, aerodynamic effect from the surrounding air must be included because any small force can make large deformation. In this paper, only the flexible media analysis is performed as early stage of analysis including aerodynamic effect. Through formulations and simulations for total Lagrangian(TL), updated Lagrangian (UL) and co-rotational(CR) method which are widely used for geometric nonlinear analysis, usefulness and reliability of each methods are investigated.

  • PDF

Linear elastic and limit state solutions of beam string structures by the Ritz-method

  • Xue, Weichen;Liu, Sheng
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.67-82
    • /
    • 2010
  • The beam string structure (BSS) has been widely applied in large span roof structures, while no analytical solutions of BSS were derived for it in the existing literature. In the first part of this paper, calculation formulas of displacement and internal forces were obtained by the Ritz-method for the most commonly used arc-shaped BSS under the vertical uniformly distributed load and the prestressing force. Then, the failure mode of BSS was proposed based on the static equilibrium. On condition the structural stability was reliable, BSS under the uniformly distributed load would fail by tensile strength failure of the string, and the beam remained in the elastic or semi-plastic range. On this basis, the limit load of BSS was given in virtue of the elastic solutions. In order to verify the linear elastic and limit state solutions proposed in this paper, three BSS modal were tested and the corresponding elastoplastic large deformation analysis was performed by the ANSYS program. The proposed failure mode of BSS was proved to be correct, and the analytical results for the linear elastic and limit state were in good agreement with the experimental and FEM results.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.

Experimental and analytical study in determining the seismic performance of the ELBRF-E and ELBRF-B braced frames

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.571-587
    • /
    • 2020
  • In this article the seismic demand and performance of two recent braced steel frames named steel moment frames with the elliptic bracing (ELBRFs) are assessed through a laboratory program and numerical analyses of FEM. Here, one of the specimens is without connecting bracket from the corner of the frame to the elliptic brace (ELBRF-E), while the other is with the connecting brackets (ELBRF-B). In both the elliptic braced moment resisting frames (ELBRFs), in addition to not having any opening space problem in the bracing systems when installed in the surrounding frames, they improve structure's behavior. The experimental test is run on ½ scale single-story single-bay ELBRF specimens under cyclic quasi-static loading and compared with X-bracing and SMRF systems in one story base model. This system is of appropriate stiffness and a high ductility, with an increased response modification factor. Moreover, its energy dissipation is high. In the ELBRF bracing systems, there exists a great interval between relative deformation at the yield point and maximum relative deformation after entering the plastic region. In other words, the distance from the first plastic hinge to the collapse of the structure is fairly large. The experimental outcomes here, are in good agreement with the theoretical predictions.

Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.331-348
    • /
    • 2013
  • Effective monitoring, reliable data analysis, and rational data interpretations are challenges for engineers who are specialized in bridge health monitoring. This paper demonstrates how to use the Global Positioning System (GPS) and accelerometer data to accurately extract static and quasi-static displacements of the bridge induced by ambient effects. To eliminate the disadvantages of the two separate units, based on the characteristics of the bias terms derived from the GPS and accelerometer respectively, a wavelet based multi-step filtering method by combining the merits of the continuous wavelet transform (CWT) with the discrete stationary wavelet transform (SWT) is proposed so as to address the GPS deformation monitoring application more efficiently. The field measurements are carried out on an existing suspension bridge under the normal operation without any traffic interference. Experimental results showed that the frequencies and absolute displacements of the bridge can be accurate extracted by the proposed method. The integration of GPS and accelerometer can be used as a reliable tool to characterize the dynamic behavior of large structures such as suspension bridges undergoing environmental loads.

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

The Pullout Behavior of a Large-diameter Batter ]Reaction Piles During Static Pile Load Test for a Large Diameter Socketed Pipe Pile (대구경 말뚝의 정재하시험시 대구경 경사반력말뚝의 인발거동)

  • 김상옥;성인출;박성철;정창규;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.5-16
    • /
    • 2002
  • The pullout behavior of large-diameter steel pipe piles(diameter = 2,500mm, length = 38~40m), which were designed as compression piles but used as reaction piles during a static compression load test on a pile(diameter = 1,000m, length = 40m), was investigated. The steel pipe piles were driven by 20m into a marine deposit and weathered soil layer and then socketed by 10m into underlying weathered and soft rock layers. The sockets and pipe were filled with reinforced concrete. The steel pipe and concrete in the steel pipe zone and concrete and rebars in the socketed zone were fully instrumented to measure strains in each zone. The pullout deformations of the reaction pile heads were measured by LVDTs. Over the course of the study, a maximum uplift deformation of 7mm was measured in the heads of reaction piles when loaded to 10MN, and 1mm of residual uplift deflection was measured. In the reaction piles, about 83% and about 12% of the applied pullout loads were transferred in the weathered rock layer and in the soft rock layer, respectively. Also, at an uplift force of 10MN, shear stresses due to the uplift in the weathered rock layer md soft rock layer were developed as much as 125.3kPa and 61.8kPa, respectively. Thus, the weathered rock layer should be utilized as resisting layer in which frictional farce could be mobilized greatly.

Modeling Techniques for a Thermoplastic Bumper Analysis (플라스틱 범퍼 해석에서 모델의 단순화가 결과에 주는 영향에 대하여)

  • 이경돈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.115-130
    • /
    • 1992
  • The analysis of thermoplastic automotive bumpers needs not only characterizations of the thermomechanical properties of thermoplastic materials but also the finite element method which can solve the problems with a large deflection, an elastic-inelastic deformation, and a change of a contact state. This paper describes the modeling techniques in the finite element analysis in order to get a good prediction of thermoplastic bumper behaviors. Simplification effects of a complex geometry of thermoplastic bumpers are studied by comparing the results from static loading tests and the finite element analysis.

  • PDF

Analysis of Metal Forming Process Using Meshfree Method (무요소법에 의한 금속성형공정의 해석)

  • Han, Kyu-Taek
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1569-1572
    • /
    • 2003
  • Meshfree approximations exhibit significant potential to solve partial differential equations. Meshfree methods have been successfully applied to various problems which the traditional finite element methods have difficulties to handle, including the quasi-static and dynamic fracture. large deformation problems, contact problems, and strain localization problems. A meshfree method based on the reproducing kernel particle approximation(RKPM) is applied to sheet metal forming analysis in this research. Metal forming examples, such as stretch forming and flanging operation, are analyzed to demonstrate the performance of the proposed meshfree method for largely deformed elasto-plastic material.

  • PDF

Simplified Collapse Analysis of Ship Transverse Structures

  • Yang, Park-Dal-Chi
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.26-36
    • /
    • 1993
  • In this paper, a thoery for the static analysis of large plastic deformations of 3-dimentional frames, aiming at application to the collapse analysis of ship structures, is presented. In the frame analysis formulation, effects of shear deformations are included. A plastic hinge is inserted into the field of a beam and post-failure deformation of the plastic hinge is characterized by finite rotations and extensions. In order to model deep web frames of ship's structures into a framed structures, collapse of thin-walled plate girders is investigated. The proposed analysis method is applied to several ship structural models in the references.

  • PDF