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Analysis of Metal Forming Process Using Meshfree Method
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ABSTRACT

Meshfree approximations exhibit significant potential to solve partial differential equations. Meshfree
methods have been successfully applied to various problems which the traditional finite element methods have
difficulties to handle, including the quasi-static and dynamic fracture, large deformation problems, contact
problems, and strain localization problems. A meshfree method based on the reproducing kernel particle
approximation{RKPM) is applied to sheet metal forming analysis in this research. Metal forming examples, such
as stretch forming and flanging operation, are analyzed to demonstrate the performance of the proposed
meshfree method for largely deformed elasto-plastic material.
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1. Introduction

Despite its success in the analysis of
geometrically and materially nonlinear response, the
most widely used finite element methods(FEM) in
engineering and science are not suitable for
problems such as large deformation, high gradients,
strain concentration, grain boundary migration,
crack propagation and problems associated with
frequently remeshing. These reasons are partially
due to the regularity requirement of meshes.
Futhermore, mesh generation is a very difficult and
lack of robust and efficient 3D mesh generators
makes the solution of 3D problems a time-
consuming task. To avoid these drawbacks of FEM,
so-called meshfree(or meshless) methods have been
developed during the past 10 years and in recent
years, there has been a growing interest in meshfree
methods.

A number of meshfree methods have been
developed to deal with these problems successfully
by constructing the approximation functions entirely
in terms of particles. The essential feature of these
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meshfree methods is that the discrete model is
completely described by particles. Other noticeable
characteristics of the methods are the smooth
approximation, ease of adaptability, robustness to
large deformations, and robustness to irregularity of
particle distributions. Among the meshfree methods,
reproducing kernel particle methods(RKPM)'™
appears prominent for its sound mathematical
foundation and high accuracy.

In this paper, we employ RK approximation to
formulate the discrete nonlinear equilibrium
equations, and frictional contact conditions. The
basic theory of RKPM is reviewed and we present
the application of RKPM to the metal forming
problems for largely deformed elasto-plastic
material.

2. Theory

2.1 Construction of One-Dimensional RKPM
Basic Function

Consider the following kernel estimate of a
function u(x):



W (x)= J]‘(I)a(x — $)u(s)ds 2.1

where u* (x)is the kernel estimate of u(x), and

@ (x—s)is the kernel function with the support

measure of ‘a’. In general, a is defined so that it

determines the domain of influence @ _(x)to the
neighborhood of s=x.

If the kernel function is a Dirac delta function,
the uk(x) exactly generates u(x). In practice,

however, the domain is finite in structural problems,
and the Dirac delta function is difficult to deal with
numerically. Therefore, for a bounded domain,
Eq.(2.1) is rewritten by

ub(x) = -('2 D, (x - $)u(s)ds (2.2)

where (D (x—s) is a positive function with the

following properties:

L)K(I)a(x—s)=l

(2.3)

u' (x)y>u(x) as a—>0 (2.4)

In fact, a zero-th consistency condition (Eq.(2.3))
can be easily satisfied by the normalization of the
kernel function. However, when the domain of
interest is finite, Eq.(2.3) does not assure the
consistency condition in the discrete form. To study
this problem, Liu et al” investigated the
reproductivity of kernel estimate using a Taylor
series expansion of the function u(s) around x.

Liu et al.” introduces a correction function to the
kernel estimate:

u® (x) = J'Q Clx;x~35) P, (x=s)u(s)ds  (2.5)

where 1" (x) is the "reproduced” function of

u(x),C(x;x— s)is called the correction function

that is to be constructed to fulfill reproducing
conditions, and Eq.(2.5) is the reproducing kernel
approximation, or the reproducing equation.

Eq.(2.5) can be rewritten in the following form,

w"(x) = _[—2 D, (x: x—s)u(s)ds (2.6)
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where (P (x;x—5)=C(x;x-5)P, (x—5)

is called the reproduced kernel. Since Eq.(2.6)
exactly reproduces N-th order polynomials, the
method fulfills the N-th order consistency conditions.

2.2 Discretization of Reproducing Kernel

Approximation

The discretized reproducing equation is obtained
by performing numerical integration in Eq.(2.6).

The discrete reproducing conditions are preserved
if the numerical integration is consistent with the
discretization of the reproducing equation. Since the
discretization of the continuous reproducing
equation is to obtain the shape functions, the weight
of the discretization is set to unity for simplicity.

3. Meshfree Formulation in Elasto-plastic
Material with Contact Conditions

Contact conditions are included to handle
contact between tools and workpiece. The classical
Coulomb law is used to model frictional contact and
the penalty method is applied to assure
impenetration. The contact traction's t, and t, in the
normal and tangential directions, respectively, are
defined as follows:

tn =-a g (27)
-a.g, if I At |S I Uftnl
(stick conditions)
tt= - W¢t,sgn(g) otherwise (2.8)

(slip conditions)

where 1 is the coefficient of friction, a, and
a, are the normal and tangential penalty numbers,
and g, and g are normal and tangential gaps
between contact surfaces.

4. Numerical Examples

4.1 Sheet Metal Forming by a Cylindrical Punch

results from the RKPM are
compared with the analytical solutions. A plane-
strain sheet metal is stretched by a cylindrical punch
as shown in Fig.1 This problem is recommended as
a benchmark test of sheet metal forming processes.

The numerical



In this problem, the sheet metal forming process is
considered to be quasi-static, and punch and die are
assumed to be perfectly rigid.

The dimension of the problem are R;=50.8mm,
C4=59.18mm, R,=61.30mm, R =6.35mm, and
h=1.0mm. The constitutive law of sheet metal is
described  using a J, plasticity with material
constants : Young's modulus E=69GPa, Poisson's
ratio v =0.3, isotropic hardening o ,( & *)= 589(10™
+ &> MPa, and coefficient of friction 1 =0.
Due to symmetry, only half of the sheet metal is
modeled with 451 particles and 3 <50 integration
zones, and Gauss integration order of 4<X4 is used.
Relatively dense particles are distributed around the
die corners in order to capture stress concentrations
in those areas. In this analysis, the end of the sheet
metal is fixed, and the rigid punch is moved
downward with a vertical displacement of 30mm in
50 incremental steps. Reproducing kernel contact
formulation and kinematic constraints treatments'”
are employed for the contact analysis.

Fig.l Schematic drawing of plain-strain cylindrical
punch problem

Fig.2 Progressive deformation of a cylindrical punch
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The progressive deformation of the sheet metal is
shown in Fig.2, and local necking are observed near
the die contact areas.

4.2 Springback of a Sheet Metal in Flanging

A straight flanging operation and its springback
behavior of a sheet metal is simulated, and the
predicted springback angle is compared with
experimental data reported in Song et al'". The
blank is 150mm in length, 150mm in width and
Imm in thickness. The design parameters of a
flanging operation are shown in Fig.3, where the
flange length L=20mm, die radius R=3mm, and
three different gaps, G=1.2, 1.6, and 2.0mm are
considered in this analysis. The material properties
are Young's modulus E=70GPa, Poisson's ratio v
=(.3, isotropic hardening o,(e¥) = 146 + 500¢?
MPa.

Holder

Fig.3 Geometry parameters of flanging problem and
description

In meshfree discretization, 3 X101, 4 X116, and 5
<131 nodes with three shape function support sizes
r=1.2, 2.0, and 3.0 are used and compared. The
meshfree results show good agreement with
experimental data, where the springback angle
increases as the gap dimension increases. The results
also demonstrate that the meshfree discretization
with larger shape function support size provides a
better agreement with the experimental data. Typical
flanging progressive deformations using 5> 131
nodes and shape function normalized support size of
2.0 are obtained. The comparison of deformation
and springback under different gap dimensions are
displayed in Fig.4



o g

(a) gap=1.2mm (b)gap=1.6mm (c)gap=2.0mm

Fig.4 Effect of gap dimension on springback

5. Conclusions

A meshfree formulation for loading history-
dependent material behavior and frictional contact
conditions is developed based on the Reproducing
Kernel Producing Method(RKPM) for the metal
forming simulation.

The emphasis is on the meshfree treatment of
large plastic deformation and complicated contact
conditions. The numerical examples show that no
mesh distortion difficulties in the finite element
analysis are encountered by usage of a smooth
kernel function with flexibly adjustable support size.

Due to the use of the Lagrangian reproducing
kernel shape functions, the support size of the kernel
functions does not require readjustment during the
contact computation and the large plastic
deformation induced in the metal forming process
can be dealt with easily by the proposed method.
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