• Title/Summary/Keyword: Large Deformation Finite Element Method

Search Result 290, Processing Time 0.026 seconds

Shape Finding Analysis of Pneumatic Structure (공기막 구조물의 형상해석)

  • 권택진;서삼열;이장복
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.57-64
    • /
    • 1994
  • The purpose of this paper is to find minimum surface shape of pneumatic structure using the finite element method. The pneumatic membrane structure is a kind of large deformation problem and very flexible composite material, which mean geomatric nonlinearity. It is not to resist for compression and resultant moment. As the displacement due to internal pressure is getting bigger, it should be considered the direction of forces. It becomes non-linear problem with the non-conservative force. The follower-force depends on the deformation and the direction of force is normal to each element. The solution process is obtained the new stiffness matrix (load correction matrix) depending on deformation through each iterated step. However, the stiffness matrix have not the symmetry and influence on the time of covergence. So in this paper Newton-Rhapson method for solving non-linear problem and for using symmetic matrix, the load direction is changed in each iterated step using the transformation matrix.

  • PDF

Large deformation bending analysis of functionally graded spherical shell using FEM

  • Kar, Vishesh Ranjan;Panda, Subrata Kumar
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.661-679
    • /
    • 2015
  • In this article, nonlinear finite element solutions of bending responses of functionally graded spherical panels are presented. The material properties of functionally graded material are graded in thickness direction according to a power-law distribution of volume fractions. A general nonlinear mathematical shallow shell model has been developed based on higher order shear deformation theory by taking the geometric nonlinearity in Green-Lagrange sense. The model is discretised using finite element steps and the governing equations are obtained through variational principle. The nonlinear responses are evaluated through a direct iterative method. The model is validated by comparing the responses with the available published literatures. The efficacy of present model has also been established by demonstrating a simulation based nonlinear model developed in ANSYS environment. The effects of power-law indices, support conditions and different geometrical parameters on bending behaviour of functionally graded shells are obtained and discussed in detail.

A Study on the Process Design and Deformation Analysis for Pressure Vessels by Finite Element Method (유한요소법을 활용한 압력용기의 설계 및 성형해석에 관한 연구)

  • 한규택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.460-467
    • /
    • 1998
  • The investigation deals with the manufacturing process design and deformation analysis for seamless pressure vessels Axisymmetric multistage deep drawing is a complex and important sheet metal forming process in the industry. In this study the process design for large size cylindrical shells with various thickness is performed and a general guideline for forming process design of pressure vessels will be suggested. Thus in this paper for the verification of the forming process design the forming analysis of pressure vessels will be carried out by PAM-STAMP which is on the basis of finite element analysis. In this case the formability of pressure vessels is evaluated using the results of computer simulation.

  • PDF

Nonlinear vibration analysis of viscoelastic laminated plates undergoing large deflection (점탄성 거동을 하는 복합재료 판의 대변위 진동해석)

  • Kim, Tae-Woo;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.546-552
    • /
    • 2000
  • Dynamic behavior of laminated composite plates undergoing moderately large deflection is investigated taking into account the viscoelastic behavior of material properties. Based on von Karman's non-linear deformation theory and Boltzmann's superposition principle, non-linear and hereditary type governing equations are derived. Finite element analysis and the method of multiple scales is applied to examine the effect of large amplitude on the dissipative nature of viscoelastic laminated plates.

  • PDF

On the Weld-Induced Deformation Analysis of Curved Plates (곡판의 맞대기 용접변형 거동에 관한 연구)

  • Lee, Joo-Sung;Tan-Hoi, Nguyen
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.201-204
    • /
    • 2006
  • A three-dimensional finite element (FEM) model has been developed to simulate the deformation due to bead on plate welding of curved plates with curvature in the weld direction. By using traditional method such as thermal-elastic-plastic FEM, the weld-induced deformation can be predicted accurately. However, this method is not practical approach to analyze the deformation of large and complex structures such as ship hull structures in view of time and cost. This study is classified from the aspect of equivalent load based on inherent strain near the weld line. Therefore, the residual deformation can be simply computed by elastic analysis. Further more, a practical solution is proposed to consider the contact between the plate and the positioning jig by judging the reaction forces of the jig at calculation step and the effect of the longitudinal curvature is closely considered.

  • PDF

A study for Variation of Consolidation Behavior by Analysis Method (해석기법에 따른 압밀거동 변화에 관한 연구)

  • Chung, Youn-In;Kim, Min-Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.97-103
    • /
    • 2011
  • In this study, finite element analysis is performed for consolidation behavior prediction of drainage-installed soft deposits. Finite element analysis is performed under the two strain conditions as small strain with limited application and large strain for relatively thick layers, large deformation and non-linear material properties. The analysis conditions such as layer depth, loading conditions, smear effects are also changed and variation of consolidation behavior for each condition is estimated from ABAQUS program.

Theoretical and experimental study of elliptical bulge test by using a rigid plastic finite element method (강소성 유한요소법을 이용한 타원벌지시험의 이론 및 실험적 연구)

  • 정완진;양동열;한규택;백남주;김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.397-408
    • /
    • 1988
  • The study is concerned with the theoretical and experimental investigation of the elliptical bulge test. The elliptical bulge test is analyzed by using a rigid-plastic finite element method incorporating large deformation and normal anisotropy. Thin elliptical diaphragms of mild steel are bulged for three aspect ratios. The contact problem the die round and the sheet is successfully solved by using a skew boundary condition. It is shown that the proper consideration of die radius and normal anisotropy is very significant. The relation between bulging pressure and deformation is obtained. It has been found that the pole is nearly under proportional straining during deformation. The instability criterion by maximum load condition enables the effective prediction of instability pressure. The computional results are in good agreement with experimental results and to be very useful for a better understanding of the elliptical bulge test.

Nonlinear large deflection buckling analysis of compression rod with different moduli

  • Yao, Wenjuan;Ma, Jianwei;Gao, Jinling;Qiu, Yuanzhong
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.855-875
    • /
    • 2015
  • Many novel materials exhibit a property of different elastic moduli in tension and compression. One such material is graphene, a wonder material, which has the highest strength yet measured. Investigations on buckling problems for structures with different moduli are scarce. To address this new problem, firstly, the nondimensional expression of the relation between offset of neutral axis and deflection curve is derived based on the phased integration method, and then using the energy method, load-deflection relation of the rod is determined; Secondly, based on the improved constitutive model for different moduli, large deformation finite element formulations are developed and combined with the arc-length method, finite element iterative program for rods with different moduli is established to obtain buckling critical loads; Thirdly, material mechanical properties tests of graphite, which is the raw material of graphene, are performed to measure the tensile and compressive elastic moduli, moreover, buckling tests are also conducted to investigate the buckling behavior of this kind of graphite rod. By comparing the calculation results of the energy method and finite element method with those of laboratory tests, the analytical model and finite element numerical model are demonstrated to be accurate and reliable. The results show that it may lead to unsafe results if the classic theory was still adopted to determine the buckling loads of those rods composed of a material having different moduli. The proposed models could provide a novel approach for further investigation of non-linear mechanical behavior for other structures with different moduli.

Finite Element Simulation of Hysteretic Behavior of Structural Stainless Steel under Cyclic Loading (반복하중을 받는 스테인리스강의 이력거동 해석모델 개발)

  • Jeon, Jun-Tai
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.186-197
    • /
    • 2019
  • Purpose: This study intends to develop a nonlinear cyclic plasticity damage model in the framework of finite element formulation, which is capable of taking large deformation effects into account, in order to accurately predict the hysteretic behavior of stainless steel structures. Method: The new cyclic constitutive equations that utilize the combined isotropic-kinematic hardening rule for plastic deformation is incorporated into the damage mechanic model in conjunction with the large strain formulation. The damage growth law is based on the experimental observations that the evolution of microvoids yields nonlinear damage accumulation with plastic deformation. The damage model parameters and the procedure for their identification are presented. Results and Conclusion: The proposed nonlinear damage model has been verified by simulating uniaxial strain-controlled monotonic and cyclic loading tests, and successfully applied to a thin-walled stainless steel pipe subjected to constant and alternating strain-controlled cyclic loadings.

무요소 해석법에 의한 초탄성 재료의 변형에 관한 연구

  • 진석기;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.732-735
    • /
    • 1995
  • A meshless method which is the new computational method being developed recently, is applied to the simulation of large deformation problems. Among the many types of meshless methods, the Reproducing Kernel particle method (RKPM) is used and the nearly incompressible hyperelastic materials are employed in simulations. The meshless methods can avoid metsh distortions and mesh entanglements that may frequently happen when the mesh-based methods like finite element method are used for the simulations of largely deformed materials. A general features of meshless methods are reviewed and the formulation of RKPM is presented. Next, the performance of explicit RKPM is demonstrated by examples.

  • PDF