• Title/Summary/Keyword: Laplace domain

Search Result 125, Processing Time 0.021 seconds

EXTINCTION AND NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSIVE p-LAPLACE EQUATION WITH A NONLOCAL SOURCE

  • Han, Yuzhu;Gao, Wenjie;Li, Haixia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.55-66
    • /
    • 2014
  • In this paper, the authors establish the conditions for the extinction of solutions, in finite time, of the fast diffusive p-Laplace equation $u_t=div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+a{\int}_{\Omega}u^q(y,t)dy$, 1 < p < 2, in a bounded domain ${\Omega}{\subset}R^N$ with $N{\geq}1$. More precisely, it is shown that if q > p-1, any solution vanishes in finite time when the initial datum or the coefficient a or the Lebesgue measure of the domain is small, and if 0 < q < p-1, there exists a solution which is positive in ${\Omega}$ for all t > 0. For the critical case q = p-1, whether the solutions vanish in finite time or not depends crucially on the value of $a{\mu}$, where ${\mu}{\int}_{\Omega}{\phi}^{p-1}(x)dx$ and ${\phi}$ is the unique positive solution of the elliptic problem -div(${\mid}{\nabla}{\phi}{\mid}^{p-2}{\nabla}{\phi}$) = 1, $x{\in}{\Omega}$; ${\phi}(x)$=0, $x{\in}{\partial}{\Omega}$. This is a main difference between equations with local and nonlocal sources.

AN ELECTROMAGNETIC FREE CONVECTION FLOW OF A MICROPOLAR FLUID WITH RELAXATION TIME

  • Zakaria, M.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.539-550
    • /
    • 2001
  • In the present investigation, we study the influence of a transverse magnetic field through a porous medium. Laplace transform techniques are used to derive the solution in the Laplace transform domain. The inversion process is carried out using a numerical method based on Fourier series expansions. Numerical computations for the temperature, the microrotation and the velocity distributions as well as for the induced magnetic and electric fields and carried out and represented graphically.

Dynamic response of curved Timoshenko beams resting on viscoelastic foundation

  • Calim, Faruk Firat
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.761-774
    • /
    • 2016
  • Curved beams' dynamic behavior on viscoelastic foundation is the subject of the current paper. By rewritten the Timoshenko beams theory formulation for the curved and twisted spatial rods, governing equations are obtained for the circular beams on viscoelastic foundation. Using the complementary functions method (CFM), in Laplace domain, an ordinary differential equation is solved and then those results are transformed to real space by Durbin's algorithm. Verification of the proposed method is illustrated by solving an example by variating foundation parameters.

A Study on the Overlap of Grid Lines around a Sharp Convex Corner with the Elliptic Grid Generation Schemes (날카로운 볼록 코너 주위의 타원형 격자 생성 기법에 의한 격자선의 겹침에 대한 고찰)

  • Kim Byoungsoo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.55-60
    • /
    • 1998
  • An elliptic grid generation scheme using Laplace's equations guarantees the resulting grids to be crossing-free as a result of maximum principle in its analytic form. Numerical results, however, often show the grid lines overlapping each other or crossing the boundaries, especially for very sharp convex corners. The cause of this problem is investigated, and it is found that this problem can be handled by properly modifying the coefficients of transformed Laplace's equations in the computational domain.

  • PDF

Transient Analysis of Hybrid Systems Composed of Lumped Elements and Frequency Dependent Lossy Disributed Interconnects

  • Ichikawa, Satoshi;Shimoda, Tomokazu
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1096-1099
    • /
    • 2000
  • A method to analyze the high speed inter-connects that are composed of frequency dependent lossy distributed lines is presented. Network modeling of hybrid systems is implemented by using the modified nodal admittance matrix in the Laplace transformation domain. The network response is computed by different two methods. One method Is the asymptotic waveform evaluation (AWE) method and other is numerical Laplace inversion method. The merits and demerits of two methods are discussed by applying to several concrete illustrative networks.

  • PDF

Effect of two temperature on isotropic modified couple stress thermoelastic medium with and without energy dissipation

  • Lata, Parveen;Kaur, Harpreet
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.461-469
    • /
    • 2020
  • The objective of this paper is to study the deformation in a homogeneous isotropic modified couple stress thermoelastic medium with and without energy dissipation and with two temperatures due to thermal source and mechanical force. Laplace and Fourier transform techniques are applied to obtain the solutions of the governing equations. The displacement components, stress components, conductive temperature and couple stress are obtained in the transformed domain. Isothermal boundary and insulated boundary conditions are used to investigate the problem.The effect of two temperature and GN theory of type-II and type-III has been depicted graphically on the various components. Numerical inversion technique has been used to obtain the solutions in the physical domain. Some special cases of interest are also deduced.

Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.501-522
    • /
    • 2019
  • The present study is concerned with the thermoelastic interactions in a two dimensional axisymmetric problem in transversely isotropic thermoelastic solid using new modified couple stress theory without energy dissipation and with two temperatures. The Laplace and Hankel transforms have been employed to find the general solution to the field equations. Concentrated normal force, normal force over the circular region, concentrated thermal source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. The effect of two temperature varying by taking different values for the two temperature on the components of normal stress, tangential stress, conductive temperature and couple stress are depicted graphically.

Effect of length scale parameters on transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.17-26
    • /
    • 2020
  • The objective of this paper is to study the deformation in transversely isotropic thermoelastic solid using new modified couple stress theory subjected to ramp-type thermal source and without energy dissipation. This theory contains three material length scale parameters which can determine the size effects. The couple stress constitutive relationships are introduced for transversely isotropic thermoelastic solid, in which the curvature (rotation gradient) tensor is asymmetric and the couple stress moment tensor is symmetric. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The displacement components, stress components, temperature change and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effects of length scale parameters are depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the scale effects of microstructures.

Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.343-351
    • /
    • 2020
  • The present research deals with the multi-dual-phase-lags thermoelasticity theory for thermoelastic behavior of transversely isotropic thermoelastic thin circular plate The Laplace and Hankel transform techniques have been used to find the solution of the problem. The displacement components, stress components, and conductive temperature distribution are computed in the transformed domain with the radial distance and further determined in the physical domain using numerical inversion techniques. The effect of rotation and two temperature are depicted graphically on the resulting quantities.

Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures

  • Kaur, Harpreet;Lata, Parveen
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.309-319
    • /
    • 2020
  • The objective is to study the deformation in a homogeneous isotropic modified couple stress thermoelastic medium with mass diffusion and with two temperatures due to a thermal source and mechanical force. Laplace and Fourier transform techniques are applied to obtain the solutions of the governing equations. The displacements, stress components, conductive temperature, mass concentration and couple stress are obtained in the transformed domain. Numerical inversion technique has been used to obtain the solutions in the physical domain. Isothermal boundary and insulated boundaryconditions are used to investigate the problem. Some special cases of interest are also deduced.