DOI QR코드

DOI QR Code

Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures

  • Kaur, Harpreet (Department of Basic and Applied Sciences, Punjabi University) ;
  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University)
  • Received : 2018.12.16
  • Accepted : 2019.11.21
  • Published : 2020.01.25

Abstract

The objective is to study the deformation in a homogeneous isotropic modified couple stress thermoelastic medium with mass diffusion and with two temperatures due to a thermal source and mechanical force. Laplace and Fourier transform techniques are applied to obtain the solutions of the governing equations. The displacements, stress components, conductive temperature, mass concentration and couple stress are obtained in the transformed domain. Numerical inversion technique has been used to obtain the solutions in the physical domain. Isothermal boundary and insulated boundaryconditions are used to investigate the problem. Some special cases of interest are also deduced.

Keywords

References

  1. Abbas, I.A. and Youssef, H.M. (2009), "Finite element analysis of two-temperature generalized magnetothermoelasticity", Arch. Appl. Mech., 79, 917-925. https://doi.org/ 10.1007/s00419-008-0259-9.
  2. Abbas, I.A. and Zenkour, A.M. (2014), "Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theor. Nanosci., 11 (1), 1-7. https://doi.org/10.1166/jctn.2014.3309.
  3. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485
  4. Ansari, R., FaghihShojaei, M., Mohammadi, V., Gholami, R. and Darabi, M.A. (2014), "Size-dependent vibrations of post-buckled functionally graded Mindlin rectangular microplates", Latin Ame. J. Solids Struct., 11 ,2351-2378. https://doi.org/10.1590/S1679-78252014001300003
  5. Ansari, R., Ashrafi, M.A. and Hosseinzadeh, S. (2014), "Vibration characteristics of Piezoelectric microbeams based on the modified couple stress theory", Shock Vib., 2014(1), 1-12. http://dx.doi.org/10.1155/2014/598292.
  6. Arif, S.M., Biwi, M. and Jahangir, A. (2018), "Solution of algebraic lyapunov equation on positive-definite hermitian matrices by using extended Hamiltonian algorithm", Comput. Mater.Continua, 54, 181-195.
  7. Asghari M. (2012), "Geometrically nonlinear micro-plate formulation based on the modified couple stress theory", Int. J. Eng. Science, 51, 292-309. https://doi.org/10.1016/j.ijengsci.2011.08.013
  8. Atanasov, M.S., Karlicic, D., Kozic, P. and Janevski, G. (2017), "Thermal effect on free vibration and buckling of a double-microbeam system", Facta universitatis, Series: Mechanical Engineering, 15(1), 45-62. https://doi.org/10.22190/FUME161115007S.
  9. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  10. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  11. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  12. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206.
  13. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/SEM.2019.71.2.185
  14. Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84(3), 323-341. https://doi.org/10.1007/s00419-013-0802-1.
  15. Chen, W., Li, L. and Xu, M. (2011), "A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation", Compos. Struct., 93, 2723-2732. https://doi.org/10.1016/j.compstruct.2011.05.032
  16. Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Paris, France, Hermann et Fils.
  17. Ezzat, M. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromagnetics Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131
  18. Fang, Y., Li, P. and Wang, Z. (2013), "Thermoelasic damping in the axisymmetric vibration of circular microplate resonators with two dimensional heat conduction", J. Therm. Stresses, 36, 830-850. https://doi.org/10.1080/01495739.2013.788406
  19. Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solids Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002.
  20. Hassan, M., Marin M.,Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49 (18), 1837-1848. https://doi.org/10.1615/heattransres.2018025569
  21. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
  22. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
  23. Karami, B., Janghorban, M., Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66.
  24. Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded micro beams based on a modified couple stress theory", Compos. Struct., 93, 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008
  25. Khaniki, H.B. and Hashemi, S.H. (2017), "Free vibration analysis of nonuniform microbeams based on modified couple stress theory: An Analytical Solution", Int. J. Eng. T. B: Appl., 30(2), 311-320.
  26. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Philos. T. Roy. Soc. London B, 67, 17-29.
  27. Kumar, R. and Devi, S. (2015), "Interaction due to Hall current and rotation in a modified couple stress elastic half-space due to ramp-type loading", Compos. Mater. Solid Struct., 21(4), 229-240. https://doi.org /10.12921/cmst.2015.21.04.007.
  28. Kumar, R. and Devi, S. (2016), "A problem of thick circular plate in modified couple stress theory of thermoelastic diffusion ", Cogent Mathematics, 3(1), 1-14. http://dx.doi.org/10.1080/23311835.2016.1217969.
  29. Kumar, R. and Devi, S. (2017), "Effects of Hall Current and rotation in modified couple stress generalized thermoelastic half space due to ramp-type heating", J. Solid Mech., 9(3), 527-54.
  30. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to inclined load in transversely isotropic magnatothermoelastic medium with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
  31. Lata, P. (2018a), Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium , Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/SEM.2018.66.1.113
  32. Lata, P. (2018b), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4),439-451. https://doi.org/10.12989/scs.2018.27.4.439.
  33. Lata, P. and Kaur, I. (2019), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupled Syst. Mech., 8(1), 55-70. http://dx.doi.org/10.12989/csm.2019.8.1.055.
  34. Lata, P. and Kaur, I. (2019a), "Thermomechanical interactions in transversely isotropic thick circular plate with axisymmetric heat supply", Struct. Eng. Mech., 69(6), 607-614. https://doi.org/10.12989/sem.2019.69.6.607.
  35. Malikan, M. (2017), "Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory", J. Appl. Comput. Mech., 4(1),1-15. https://doi.org/10.22055/JACM.2017.21820.1117.
  36. Marin M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Mathematics, 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
  37. Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B: Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063
  38. Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mechanics and Thermodynamics, 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4
  39. Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61 (3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
  40. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  41. Mehralian, F. and TadiBeni, Y. (2017), "Thermo-electromechanical buckling analysis of cylindrical nanoshell on the basis of modified couple stress theory", J. Mech. Sci. Technol., 31(4), 1773-1787. https://doi.org/10.1007/s12206-017-0325-8
  42. Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results in Physics, 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
  43. Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2015), "The effect of gravity on plane waves in a rotating thermo-microstretch elastic solid for a mode-I crack with energy dissipation", Mech. Adv. Mater. Struct., 22(11), 945-955. https://doi.org/10.1080/15376494.2014.884657.
  44. Press W. H., Teukolsky S.A., Vellerling W. T. and Flannery B.P. (1986), Numerical Recipe, Cambridge University Press.
  45. Rafiq, M., Singh, B., Arifa, S., Nazeer, M., Usman, M., Arif, S., Bibi, M. and Jahangir, A. (2019), "Harmonic waves solution in dual-phase-lag magneto-thermoelasticity", Open Physics, 17(1), 8-15. https://doi.org/10.1515/phys-2019-0002.
  46. Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22, 107-117.
  47. Shaat, M., Mahmoud, F.F., Gao, X.L. and Faheem, A.F. (2014), "Size dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects", Int. J. Mech. Sci., 79, 31-37. https://doi.org/10.1016/j.ijmecsci.2013.11.022
  48. Sherief, H.H. and Saleh H. (2005), "A half-space problem in the theory of generalized thermoelastic diffusion", Int. J. Solids Struct., 42, 4484-4493. https://doi.org/10.1016/j.ijsolstr.2005.01.001
  49. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
  50. Togun, N. and Bagdatli, S.M. (2017), "Investigation of the size effect in Euler-Bernoulli nanobeam using the modified couple stress theory", Celal Bayar University Journal of Science, 13(4), 893-899. https://doi.org/10.18466/cbayarfbe.370362.
  51. Youssef, H.M (2013), "Variational principle of two - temperature thermoelasticity without energy dissipation", J. Thermoelasticity, 1(1), 42-44.
  52. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F., and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.

Cited by

  1. Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.521
  2. A study on thermo-elastic interactions in 2D porous media with-without energy dissipation vol.38, pp.5, 2020, https://doi.org/10.12989/scs.2021.38.5.523
  3. Analytical solutions of the temperature increment in skin tissues caused by moving heating sources vol.40, pp.4, 2020, https://doi.org/10.12989/scs.2021.40.4.511
  4. Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.663