• Title/Summary/Keyword: Landslide model experiment

Search Result 15, Processing Time 0.026 seconds

Numerical Analysis of Rainfall Induced Landslide Dam Formation

  • Do, Xuan Khanh;Regmi, Ram Krishna;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.245-245
    • /
    • 2015
  • In the recent years, due to long-lasting heavy rainfall events, a large number of landslides have been observed in the mountainous area of the world. Such landslides can also form a dam as it blocks the course of a river, which may burst and cause a catastrophic flood. Numerical analysis of landslide dam formation is rarely available, while laboratory experimental studies often use assumed shape to analyze the landslide dam failure and flood hydraulics in downstream. In this study, both experimental and numerical studies have been carried out to investigate the formation of landslide dam. Two case laboratory experiments were conducted in two flumes simultaneously. The first flume (2.0 m 0.6 m 0.5 m) was set at $22^{\circ}$ and $27^{\circ}$ slope to generate the landslide using rainfall intensity of 70.0 mm/hr. On the other hand, the second flume (1.5 m 0.25 m 0.3 m) was set perpendicularly at the downstream end of the first flume to receive the landslide mass forming landslide dam. The formation of landslide dam was observed at $15^{\circ}$ slope of the second flume. The whole processes including the landslide initiation and movement of the landslide mass into the second channel was captured by three digital cameras. In numerical analysis, a two-dimensional (2D) seepage flow model, a 2D slope stability model (Spencer method) and a 2D landslide dam-geometry evaluation model were coupled as a single unit. This developed model can determine the landslide occurrence time, the failure mass and the geometry of landslide dam deposited in the second channel. The data obtained from numerical simulation results has good agreement with the experimental measurements.

  • PDF

A Study on Experimental Prediction of Landslide in Korea Granite Weathered Soil using Scaled-down Model Test (축소모형 실험을 통한 국내 화강암 풍화토의 산사태 예측 실험 연구)

  • Son, In-Hwan;Oh, Yong-Thak;Lee, Su-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.439-447
    • /
    • 2019
  • In this study, experiments were conducted to establish appropriate measures for slopes with high risk of collapse and to obtain results for minimizing slope collapse damage by detecting the micro-displacement of soil in advance by installing a laser sensor and a vibration sensor in the landslide reduction model experiment. Also, the behavior characteristics of the soil layer due to rainfall and moisture ratio changes such as pore water pressure and moisture were analyzed through a landslide reduction model experiment. The artificial slope was created using granite weathering soil, and the resulting water ratio(water pressure, water) changes were measured at different rainfall conditions of 200mm/hr and 400mm/hr. Laser sensors and vibration sensors were applied to analyze the surface displacement, and the displacement time were compared with each other by video analysis. Experiments have shown that higher rainfall intensity takes shorter time to reach the limit, and increase in the pore water pressure takes shorter time as well. Although the landslide model test does not fully reflect the site conditions, measurements of the time of detection of displacement generation using vibration sensors show that the timing of collapse is faster than the method using laser sensors. If ground displacement measurements using sensors are continuously carried out in preparation for landslides, it is considered highly likely to be utilized as basic data for predicting slope collapse, reducing damage, and activating the measurement industry.

Analysis of Impulse Wave Characteristics Generated by Landslide Models with Various Mass Ratio : Focus on Wave Amplitude (질량비 변화에 따른 산사태 모형으로 인해 생성되는 충격파의 특성분석 : 파진폭을 중심으로)

  • Hanwool Cho;Hojin Lee;Sungduk Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.5-11
    • /
    • 2023
  • Impulse waves generated by landslides near water bodies can lead to fatal damage to human life and surrounding infrastructure. These impulse waves are generally called landslide-impulsed waves and occur without being limited to a specific area. Recently, localized torrential rains have frequently occurred due to the influence of abnormal weather, both the frequency and scale of landslides occurring in Korea are increasing. Therefore, in this study, the experiments were conducted according to the mass ratio of the landslide models, and among the characteristics of the generated landslide-impulse waves. And the wave amplitude was observed and analyzed. In this study, a total of 75 experiments were conducted by repeating the experiment 5 times for 15 cases with mass ratios of 5 landslide models and 3 types of slope angles. As a result of experiments with different mass ratios of landslide models, if the landslides have the same initial energy, the size of the landslide-impulse waves generated by mixing granular and block forms is higher than the size of the landslide-impulse waves generated by pure granular and block landslides. It is analyzed that the size may be larger.

A Study on behavior of Slope Failure Using Field Excavation Experiment (현장 굴착 실험을 통한 사면붕괴 거동 연구)

  • Park, Sung-Yong;Jung, Hee-Don;Kim, Young-Ju;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.101-108
    • /
    • 2017
  • Recently, the occurrence of landslides has been increasing over the years due to the extreme weather event. Developments of landslides monitoring technology that reduce damage caused by landslide are urgently needed. Therefore, in this study, a strain ratio sensor was developed to predict the ground behavior during the slope failure, and the change in surface ground displacement was observed as slope failed on the field model experiment. As a result, in the slope failure, the ground displacement process increases the risk of collapse as the inverse displacement approaches zero. It is closely related to the prediction of precursor. In all cases, increase in displacement and reverse speed of inverse displacement with time was observed during the slope failure, and it is very important event for monitoring collapse phenomenon of risky slopes. In the future, it can be used as disaster prevention technology to contribute in reduction of landslide damage and activation of measurement industry.

Model experiment for calculation of debris flow's shock force (Use dry materials) (토석류 충격력 산정을 위한 모형실험(건조시료 활용))

  • Kim, Jin-Hwan;Lee, Yong-Soo;Cho, Gyu-Tae;Choi, Won-Hun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1271-1274
    • /
    • 2009
  • One of the landslide, Debris flow means flow mixed of rocks, gravels, sand and soil with water. Debris flow occurred in summer by passed the rainy season and typhoon. Especially, Localized heavy rain derived from abnormal weather caused debris flow independent of season. It is increase to collapse of house, bridge, roads by debris flow but countermeasure studies about occurrence cause, movement pattern, damage scale about debris flow are insufficient. This study performed debris flow model experiment using dry material and calculated shock force predicted debris flow occurrence.

  • PDF

Full Polarimetric SAR Decomposition Analysis of Landslide-affected Areas in Mocoa, Colombia

  • Jeon, Hyeong-Joo;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.365-374
    • /
    • 2017
  • SAR (Synthetic Aperture Radar) is an effective tool for monitoring areas damaged by disasters. Full PolSAR (Polarimetric SAR) enhances SAR's capabilities by providing specific scattering mechanisms. Thus, full PolSAR data have been widely used to analyze the situation when disasters occur. To interpret full PolSAR data, model-based decomposition methods are frequently used due to its easy physical interpretation of PolSAR data and computational efficiency. However, these methods present problems. One of the key problems is the overestimation of the volume scattering component. To minimize the volume scattering component, the OA (Orientation Angle) compensation method is widely utilized. This paper shows that the effect of the OA compensation was analyzed over landslide affected areas. In this paper, the OA compensation is applied by using the OA estimated from the maximum relative Hellinger distance. We conducted an experiment using two full polarimetric ALOS/PALSAR (Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar)-2 data collected over Mocoa, Colombia which was seriously damaged by the 2017 Mocoa landslide. After OA compensation, the experimental results showed volume scattering power decreased, while the double-bounce and surface scattering power increased. Particularly, significant changes were noted in urban areas. In addition, after OA compensation, the separability of the double-bounce and surface scattering components are improved over the damaged building areas. Furthermore, changes in the OA can discriminate visually between the damaged building areas and undamaged areas. In conclusion, we demonstrated that the effect of OA compensation improved the influence of the double-bounce and surface scattering components, and OA changes can be useful for detecting damaged building areas.

Infiltration Characteristics of Tracer Wetting Front through Effective Pores of Unsaturated Soil (불포화토 유효공극 내 추적자 침윤선 거동 특성 평가)

  • Kim, Man-Il;Nishigaki, Makoto
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.41-47
    • /
    • 2007
  • Geotechnical Phenomena such as landslide, groundwater recharge and groundwater fluctuation due to rainfall can be explain to use a dielectric response and infiltration variation by the movement of a wetting front in the subsurface. The infiltration of a wetting front is infiltrating to the connected pores which are distributed in unsaturated soil. In this study we carried out to laboratory experiment of a vertical infiltration column test using ethanol mix-ing tracer which has same the specific gravity of water. All physical values are detected to use a variation of dielectric constant and calculated to use a dielectric mixing model and tracer test model. This dielectric method measured by each dielectric constant of geological soil porous materials should be of for the geotechnical information and useful a field monitoring technique for detecting the variations of the volumetric water content and the wetting front, which are insignificant the key parameter to understanding the landslide by rainfall.

Study on grout-free smart ground anchor using electromagnetic induction

  • Hyun-Seok Lee;Jong-Kyu Park;Jung-Tae Kim
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.531-542
    • /
    • 2024
  • This study proposes a ground anchor using electromagnetic induction and utilizes an extended structure using hinges and links and mounting and sensing using electromagnets. The aim is to secure the anchor force, excluding grout, and to secure various sensing capabilities, including ground behavior. We propose a design based on the drilling diameter of 150 mm, and the materials used were STS304 and Aluminum 6061-T6. Computerized analysis was performed to confirm structural safety and functional implementation. The pull-out experiment was conducted by simulating the bedrock environment on a model earthwork as an experiment to check whether anchor force was generated by the insertion and tension of the anchor. The environmental pollution of grout, the difficulty of removing strands, and the inability to check whether the anchor is seated, which were pointed out as disadvantages of the existing ground anchor, were solved. Therefore, this study suggest that it can be effectively utilized as a secure and monitored anchoring solution in eco-friendly construction practices, including the installation of landslide prevention barriers.

Analysis of Sensors' Behavior and Its Utility for Shallow Landslide Early Warning through Model Slope Collapse Experiment (붕괴모의실험을 통한 산사태 조기경보용 계측센서의 반응성 분석 및 활용성 고찰)

  • Kang, Minjeng;Seo, Junpyo;Kim, Dongyeob;Lee, Changwoo;Woo, Choongshik
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.208-215
    • /
    • 2019
  • The goal of this study was to analyze the reactivity of a volumetric water content sensor (soil moisture sensor) and tensiometer and to review their use in the early detection of a shallow landslide. We attempted to demonstrate shallow and rapid slope collapses using three different soil ratios under artificial rainfall at 120 mm/h. Our results showed that the measured value of the volumetric water-content sensor converged to 30~37%, and that of the tensiometer reached -3~-5 kPa immediately before the collapse of the soil under all three conditions. Based on these results, we discussed a temporal range for early warnings of landslides using measurements of the volumetric water content sensors installed at the bottom of the soil slope, but could not generalize and clarify the exact timing for these early warnings. Further experiments under various conditions are needed to determine how to use both sensors for the early detection of shallow landslides.

Slope Failure Prediction through the Analysis of Surface Ground Deformation on Field Model Experiment (현장모형실험 기반 표층거동분석을 통한 사면붕괴 예측)

  • Park, Sung-Yong;Min, Yeon-Sik;Kang, Min-seo;Jung, Hee-Don;Sami, Ghazali-Flimban;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, one of the natural disasters, landslide is causing huge damage to people and properties. In order to minimize the damage caused by continuous landslide, a scientific management system is needed for technologies related to measurement and monitoring system. This study aims to establish a management system for landslide damage by prediction of slope failure. Ground behavior was predicted by surface ground deformation in case of slope failure, and the change in ground displacement was observed as slope surface. As a result, during the slope failure, the ground deformation has the collapse section, the after collapse precursor section, the acceleration section and the burst acceleration section. In all cases, increase in displacement with time was observed as a slope failure, and it is very important event of measurement and maintenance of risky slope. In the future, it can be used as basic data of slope management standard through continuous research. And it can contribute to reduction of landslide damage and activation of measurement industry.