• Title/Summary/Keyword: Landslide Susceptibility Mapping

Search Result 47, Processing Time 0.025 seconds

Shallow landslide susceptibility mapping using TRIGRS

  • Viet, Tran The;Lee, Giha;An, Hyun Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.214-214
    • /
    • 2015
  • Rainfall induced landslides is one of the most devastating natural disasters acting on mountainous areas. In Korea, landslide damage areas increase significantly from 1990s to 2000s due to the increase of both rainfall intensity and rainy days in addition with haphazard land development. This study was carried out based on the application of TRIGRS unsaturated (Transient Rainfall Infiltration and Grid-based Regional Slope stability analysis), a Fortran coded, physically based, and numerical model that can predict landslides for areas where are prone to shallow precipitation. Using TRIGRS combining with the geographic information system (GIS) framework, the landslide incident happened on 27th, July 2011 in Mt. Umyeon in Seoul was modeled. The predicted results which were raster maps showed values of the factors of safety on every pixel at different time steps show a strong agreement with to the observed actual landslide scars in both time and locations. Although some limitations of the program are still needed to be further improved, some soil data as well as landslide information are lack; TRIGRS is proved to be a powerful tool for shallow landslide susceptibility zonation especially in great areas where the input geotechnical and hydraulic data for simulation is not fully available.

  • PDF

A Review on Remote Sensing and GIS Applications to Monitor Natural Disasters in Indonesia

  • Hakim, Wahyu Luqmanul;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1303-1322
    • /
    • 2020
  • Indonesia is more prone to natural disasters due to its geological condition under the three main plates, making Indonesia experience frequent seismic activity, causing earthquakes, volcanic eruption, and tsunami. Those disasters could lead to other disasters such as landslides, floods, land subsidence, and coastal inundation. Monitoring those disasters could be essential to predict and prevent damage to the environment. We reviewed the application of remote sensing and Geographic Information System (GIS) for detecting natural disasters in the case of Indonesia, based on 43 articles. The remote sensing and GIS method will be focused on InSAR techniques, image classification, and susceptibility mapping. InSAR method has been used to monitor natural disasters affecting the deformation of the earth's surface in Indonesia, such as earthquakes, volcanic activity, and land subsidence. Monitoring landslides in Indonesia using InSAR techniques has not been found in many studies; hence it is crucial to monitor the unstable slope that leads to a landslide. Image classification techniques have been used to monitor pre-and post-natural disasters in Indonesia, such as earthquakes, tsunami, forest fires, and volcano eruptions. It has a lack of studies about the classification of flood damage in Indonesia. However, flood mapping was found in susceptibility maps, as many studies about the landslide susceptibility map in Indonesia have been conducted. However, a land subsidence susceptibility map was the one subject to be studied more to decrease land subsidence damage, considering many reported cases found about land subsidence frequently occur in several cities in Indonesia.

Landslide Susceptibility Analysis : SVM Application of Spatial Databases Considering Clay Mineral Index Values Extracted from an ASTER Satellite Image (산사태 취약성 분석: ASTER 위성영상을 이용한 점토광물인자 추출 및 공간데이터베이스의 SVM 통계기법 적용)

  • Nam, Koung-Hoon;Lee, Moung-Jin;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • This study evaluates landslide susceptibility using statistical analysis by SVM (support vector machine) and the illite index of clay minerals extracted from ASTER(advanced spaceborne thermal emission and reflection radiometer) imagery which can be use to create mineralogical mapping. Landslide locations in the study area were identified from aerial photographs and field surveys. A GIS spatial database was compiled containing topographic maps (slope, aspect, curvature, distance to stream, and distance to road), maps of soil properties (thickness, material, topography, and drainage), maps of timber properties (diameter, age, and density), and an ASTER satellite imagery (illite index). The landslide susceptibility map was constructed through factor correlation using SVM to analyze the spatial database. Comparison of area under the curve values showed that using the illite index model provided landslide susceptibility maps that were 76.46% accurate, which compared favorably with 74.09% accuracy achieved without them.

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area (퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구)

  • Kim, Jin Yeob;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.301-312
    • /
    • 2013
  • Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.

Landslide Susceptibility Mapping Using Ensemble FR and LR models at the Inje Area, Korea (FR과 LR 앙상블 모형을 이용한 산사태 취약성 지도 제작 및 검증)

  • Kim, Jin Soo;Park, So Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • This research was aimed to analyze landslide susceptibility and compare the prediction accuracy using ensemble frequency ratio (FR) and logistic regression at the Inje area, Korea. The landslide locations were identified with the before and after aerial photographs of landslide occurrence that were randomly selected for training (70%) and validation (30%). The total twelve landslide-related factors were elevation, slope, aspect, distance to drainage, topographic wetness index, stream power index, soil texture, soil sickness, timber age, timber diameter, timber density, and timber type. The spatial relationship between landslide occurrence and landslide-related factors was analyzed using FR and ensemble model. The produced LSI maps were validated and compared using relative operating characteristics (ROC) curve. The prediction accuracy of produced ensemble LSI map was about 2% higher than FR LSI map. The LSI map produced in this research could be used to establish land use planning and mitigate the damages caused by disaster.

Landslide Susceptibility Mapping by Comparing GIS-based Spatial Models in the Java, Indonesia (GIS 기반 공간예측모델 비교를 통한 인도네시아 자바지역 산사태 취약지도 제작)

  • Kim, Mi-Kyeong;Kim, Sangpil;Nho, Hyunju;Sohn, Hong-Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.927-940
    • /
    • 2017
  • Landslide has been a major disaster in Indonesia, and recent climate change and indiscriminate urban development around the mountains have increased landslide risks. Java Island, Indonesia, where more than half of Indonesia's population lives, is experiencing a great deal of damage due to frequent landslides. However, even in such a dangerous situation, the number of inhabitants residing in the landslide-prone area increases year by year, and it is necessary to develop a technique for analyzing landslide-hazardous and vulnerable areas. In this regard, this study aims to evaluate landslide susceptibility of Java, an island of Indonesia, by using GIS-based spatial prediction models. We constructed the geospatial database such as landslide locations, topography, hydrology, soil type, and land cover over the study area and created spatial prediction models by applying Weight of Evidence (WoE), decision trees algorithm and artificial neural network. The three models showed prediction accuracy of 66.95%, 67.04%, and 69.67%, respectively. The results of the study are expected to be useful for prevention of landslide damage for the future and landslide disaster management policies in Indonesia.

Susceptibility Mapping of Umyeonsan Using Logistic Regression (LR) Model and Post-validation through Field Investigation (로지스틱 회귀 모델을 이용한 우면산 산사태 취약성도 제작 및 현장조사를 통한 사후검증)

  • Lee, Sunmin;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1047-1060
    • /
    • 2017
  • In recent years, global warming has been continuing and abnormal weather phenomena are occurring frequently. Especially in the 21st century, the intensity and frequency of hydrological disasters are increasing due to the regional trend of water. Since the damage caused by disasters in urban areas is likely to be extreme, it is necessary to prepare a landslide susceptibility maps to predict and prepare the future damage. Therefore, in this study, we analyzed the landslide vulnerability using the logistic model and assessed the management plan after the landslide through the field survey. The landslide area was extracted from aerial photographs and interpretation of the field survey data at the time of the landslides by local government. Landslide-related factors were extracted topographical maps generated from aerial photographs and forest map. Logistic regression (LR) model has been used to identify areas where landslides are likely to occur in geographic information systems (GIS). A landslide susceptibility map was constructed by applying a LR model to a spatial database constructed through a total of 13 factors affecting landslides. The validation accuracy of 77.79% was derived by using the receiver operating characteristic (ROC) curve for the logistic model. In addition, a field investigation was performed to validate how landslides were managed after the landslide. The results of this study can provide a scientific basis for urban governments for policy recommendations on urban landslide management.