DOI QR코드

DOI QR Code

Landslide Susceptibility Mapping by Comparing GIS-based Spatial Models in the Java, Indonesia

GIS 기반 공간예측모델 비교를 통한 인도네시아 자바지역 산사태 취약지도 제작

  • 김미경 (연세대학교 건설환경공학과 통합과정) ;
  • 김상필 (연세대학교 건설환경공학과 통합과정) ;
  • 노현주 (연세대학교 건설환경공학과 통합과정) ;
  • 손홍규 (연세대학교 건설환경공학과)
  • Received : 2017.07.18
  • Accepted : 2017.08.08
  • Published : 2017.10.01

Abstract

Landslide has been a major disaster in Indonesia, and recent climate change and indiscriminate urban development around the mountains have increased landslide risks. Java Island, Indonesia, where more than half of Indonesia's population lives, is experiencing a great deal of damage due to frequent landslides. However, even in such a dangerous situation, the number of inhabitants residing in the landslide-prone area increases year by year, and it is necessary to develop a technique for analyzing landslide-hazardous and vulnerable areas. In this regard, this study aims to evaluate landslide susceptibility of Java, an island of Indonesia, by using GIS-based spatial prediction models. We constructed the geospatial database such as landslide locations, topography, hydrology, soil type, and land cover over the study area and created spatial prediction models by applying Weight of Evidence (WoE), decision trees algorithm and artificial neural network. The three models showed prediction accuracy of 66.95%, 67.04%, and 69.67%, respectively. The results of the study are expected to be useful for prevention of landslide damage for the future and landslide disaster management policies in Indonesia.

산사태는 인도네시아에서 오랫동안 피해가 많은 재해로 최근 기후변화와 산지 주위의 무분별한 도시 개발로 인해 위험이 가중되고 있다. 인도네시아 자바지역은 매년 산사태가 빈번하게 발생하고, 인도네시아 인구 절반 이상이 거주하고 있어 그 피해가 크다. 하지만 이러한 위험한 상황에도 불구하고 산사태 위험지역에 매년 거주하는 주민이 증가하고 있어 산사태 위험지역 및 취약지 분석에 대한 기술이 필요한 상황이다. 이에 본 연구는 인도네시아 자바지역을 대상으로 GIS 기반 공간예측모델을 이용하여 산사태 취약성을 평가하고자 한다. 연구지역의 산사태 발생 위치, 지형, 수문, 토양, 토지피복 등의 지형공간정보 자료를 구축하였고, 공간예측모델로는 Weight of Evidence (WoE), 의사결정트리 알고리즘, 인공신경망을 선정하여 산사태 취약지도를 제작하였다. 세 가지 모델은 각각 66.95%, 67.04%, 69.67%의 예측정확도를 보였다. 본 연구의 결과는 향후 인도네시아 산사태 피해 예방 및 산사태 관련 재난관리정책에 중요한 자료로 사용될 수 있을 것으로 기대한다.

Keywords

References

  1. Anderson, M. G. and Holcombe, E. (2013). Community-based landslide risk reduction: managing disasters in small steps. World Bank Publications.
  2. Basofi, A., Fariza, A., Ahsan, A. S. and Kamal, I. M. (2016). "A comparison between natural and Head/tail breaks in LSI (Landslide Susceptibility Index) classification for landslide susceptibility mapping: A case study in Ponorogo, East Java, Indonesia." Proceedings - 2015 International Conference on Science in Information Technology: Big Data Spectrum for Future Information Economy, ICSITech 2015, pp. 337-342, DOI:10.1109/ICSITech.2015.7407828.
  3. Beven, K. J., Kirkby, M. J. (1979). "A physically based, variable contributing area model of basin hydrology / Un modele a base physique de zone d'appel variable de l'hydrologie du bassin versant." Hydrological Sciences Bulletin, Vol. 24, No. 1, pp. 43-69, DOI:10.1080/02626667909491834.
  4. BNPB (2011). Geospasial - BNPB. Available at: http://geospasial.bnpb.go.id (Accessed: 2017/06/22, 2017).
  5. Bonham-Carter, G. F. (2002). Geographic information systems for geoscientist: modeling with GIS. Elsevier, New York.
  6. Brabb, E. E. (1984). Innovative approaches to landslide hazard and risk mapping. Proceedings of the 4th International Symposium on Landslides. Canadian Geotechnical Society, Toronto, Ontario, Canada, pp. 307-324.
  7. Chesworth, W. (2007). Encyclopedia of soil science. Springer Science & Business Media.
  8. Choi, E. K., Kim, S. W., Lee, Y. C., Lee, K. H. and Kim, I. S. (2013). "analyzing the disaster vulnerability of Mt. Baekdusan area using terrain factors." Journal of the Korean Earth Science Society, Vol. 34, No. 7, pp. 605-614, DOI:http://dx.doi.org/10.5467/JKESS.2013.34.7.605 (in Korean).
  9. Choi, J. and Seo, D. (1999). "Application of data mining decision trees." Statistical Analysis Research, Vol. 4, No. 1, pp. 61-83 (in Korean).
  10. Chung, C. J. F. and Fabbri, A. G. (1999). "Probabilistic prediction models for landslide hazard mapping." Photogrammetric Engineering and Remote Sensing, Vol. 65, No. 12, pp. 1389-1399.
  11. City Population (2017). Indonesia: Urban population of cities. Available at: http://citypopulation.de/Indonesia-MU.html (Accessed: 2017/06/22, 2017).
  12. FAO (2017). Other global soil maps and databases. Available at: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/other-global-soil-maps-and-databases/en/ (Accessed: 2017/06/22, 2017).
  13. Florinsky, I. V. (2011). Digital terrain analysis in soil science and geology. Academic Press.
  14. Fowze, J. S. M., Thakar, V., Wahyu, S., Shofiyati, R., Hazarika, M. K. and Samarakoon, L. (2010). "Landslide susceptibility mapping in agricultural land using remote sensing and GIS: A case study in east Java, Indonesia." 31st Asian Conference on Remote Sensing 2010, ACRS 2010, Vol. 2, pp. 1446-1451.
  15. Gomez, H. and Kavzoglu, T. (2005). "Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela." Engineering Geology, Vol. 78, No. 1, pp. 11-27. https://doi.org/10.1016/j.enggeo.2004.10.004
  16. Gunadi, D. S. A., Jaya, I. N. S. and Tjahjono, B. (2017). "Spatial modeling in landslide susceptibility." Indonesian Journal of Electrical Engineering and Computer Science, Vol. 5, No. 1, pp. 139-146, DOI:10.11591/ijeecs.v5.i1.pp139-146.
  17. Hadmoko, D. S., Lavigne, F. and Samodra, G. (2017). "Application of a semiquantitative and GIS-based statistical model to landslide susceptibility zonation in Kayangan Catchment, Java, Indonesia." Natural Hazards, Vol. 87, No. 1, pp. 437-468, DOI:10.1007/s11069-017-2772-z.
  18. Jakarta Globe (2014). Most of Indonesia at risk of landslides. Available at: http://jakartaglobe.id/news/most-of-indonesians-atrisk-of-landslides/ (Accessed: 2017/06/22, 2017).
  19. Kang, S. O., Jun, S. O., Park, K. H., Jeon, Y. H. and Lee, D. H. (2009). "Study of neural network training algorithm comparison and prediction of unsteady aerodynamic forces of 2D airfoil." Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 37, No. 5, pp. 425-432 (in Korean). https://doi.org/10.5139/JKSAS.2009.37.5.425
  20. Kang, S. H., Lee, S. R., Nikhil, V. V. and Park, J. Y. (2015). "Analysis of differences in geomorphological characteristics on initiation of landslides and debris flows." Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 2, pp. 1-10. https://doi.org/10.9798/KOSHAM.2015.15.2.1
  21. Kass, G. V. (1980). "An exploratory technique for investigating large quantities of categorical data." Journal of the Royal Statistical Society. Series C (Applied Statistics) Vol. 29, No. 2, pp. 119-127, DOI:10.2307/2986296.
  22. Kim, J. S. and Park, S. Y. (2017). "Landslide susceptibility mapping using ensemble FR and LR models at the Inje area, Korea." Journal of the Korean Society for Geo-spatial Information Science, Vol. 25, No. 1, pp. 19-27, DOI:http://dx.doi.org/10.7319/kogsis.2017.25.1.019 (in Korean).
  23. Kim, K. S., Song, Y. S., Chae, B. G., Cho, Y. C. and Lee, C. O. (2007). "Geometric characteristics of landslides on natural terrain according to the geological condition." The Journal of Engineering Geology, Vol. 17, No. 1, pp. 75-87 (in Korean).
  24. Lakmal Deshapriya, N., Nugroho, U. C., Wiguna, S., Hazarika, M. and Samarakoon, L. (2016). "Landslide susceptibility mapping using logistic regression in Garut district, west Java, Indonesia." 37th Asian Conference on Remote Sensing, ACRS 2016, Vol. 3, pp. 1830-1836.
  25. Lee, H. and Kim, G. (2012). "Landslide risk assessment in Inje using logistic regression model." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 20, No. 3, pp. 313-321.
  26. Lee, S. Jeong, G. and Park, S. J. (2015). "Evaluating geomorphological classification systems to predict the occurrence of landslides in mountainous region." Journal of the Korean Geographical Society, Vol. 50, No. 5, pp. 485-503, DOI:http://dx.doi.org/10.5467/JKESS.2013.34.7.605 (in Korean).
  27. Lee, S. and Sambath, T. (2006). "Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models." Environmental Geology, Vol. 50, pp. 847-855. https://doi.org/10.1007/s00254-006-0256-7
  28. Marquardt, D. W. (1963). "An algorithm for least-squares estimation of nonlinear parameters." Journal of the society for Industrial and Applied Mathematics, Vol. 11, No. 2, pp. 431-441. https://doi.org/10.1137/0111030
  29. Moore, I. D., Grayson, R. B. and Ladson, A. R. (1991). "Digital terrain modelling: A review of hydrological, geomorphological, and biological applications." Hydrological Processes, Vol. 5, No. 1, pp. 3-30, DOI:10.1002/hyp.3360050103.
  30. News24 (2013). Half of Indonesians at risk of landslides. Available at:http://www.news24.com/World/News/Half-of-Indonesians-atrisk-of-landslides-20130328 (Accessed: 2017/06/22, 2017).
  31. Ngadisih, Bhandary, N. P., Yatabe, R. and Dahal, R. K. (2016). "Logistic regression and artificial neural network models for mapping of regional-scale landslide susceptibility in volcanic mountains of West Java (Indonesia)." AIP Conference Proceedings, Vol. 1730, DOI:10.1063/1.4947407.
  32. Oh, H. J. (2010). "Landslide susceptibility analysis and validation using Weight-of Evidence model." Journal of the Geological Society of Korea, Vol. 46, No. 2, pp. 157-170 (in Korean).
  33. Paola, J. D., and Schowengerdt, R. A. (1995). "A review and analysis of backpropagation neural networks for classification of remotelysensed multi-spectral imagery." International Journal of Remote Sensing, Vol. 16, No. 16, pp. 3033-3058, DOI:10.1080/01431169508954607.
  34. Pei, T., Qin, C. Z., Zhu, A. X., Yang, L., Luo, M., Li, B. and Zhou, C. (2010). "Mapping soil organic matter using the topographic wetness index: A comparative study based on different flowdirection algorithms and kriging methods." Ecological Indicators, Vol. 10, No. 3, pp. 610-619, DOI:http://dx.doi.org/10.1016/j.ecolind.2009.10.005.
  35. Petley, D. (2012). "Global patterns of loss of life from landslides." Geology, Vol. 40, No. 10, pp. 927-930, DOI:10.1130/G33217.1.
  36. Petschko, H., Brenning, A., Bell, R., Goetz, J. and Glade, T. (2014). "Assessing the quality of landslide susceptibility maps - case study Lower Austria." Nat. Hazards Earth Syst. Sci., Vol. 14, No. 1, pp. 95-118, DOI:10.5194/nhess-14-95-2014.
  37. Samodra, G., Chen, G., Sartohadi, J. and Kasama, K. (2017). "Comparing data-driven landslide susceptibility models based on participatory landslide inventory mapping in Purwosari area, Yogyakarta, Java." Environmental Earth Sciences, Vol. 76, No. 4, pp. 1-19, DOI:10.1007/s12665-017-6475-2.
  38. Taheri, J. and Zomaya, A. Y. (2006). Artificial neural networks, Handbook of Nature-Inspired and Innovative Computing. Springer, pp. 147-185.
  39. Wati, S. E., Hastuti, T., Widjojo, S. and Pinem, F. (2010). "Landslide susceptibility mapping with heuristic approach in mountainous area a case study in Tawangmangu Sub District, Central Java, Indonesia." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 38, pp. 248-253.
  40. Weiss, A. D. (2001). Topographic positions and landforms analysis. ESRI International User Conference. San Diego, California.
  41. Wikipedia (2017). Indonesia. Available at:https://ko.wikipedia.org/wiki/%EC%9D%B8%EB%8F%84%EB%84%A4%EC%8B%9C%EC%95%84 (Accessed: 2017/06/22, 2017).
  42. Yoo, S. H., Heo, J., Jung, J. and Han, S. (2010). "Building a model for estimate the soil organic carbon using decision tree algorithm." Journal of the Korean Society for Geo-spatial Information Science, Vol. 18, No. 3, pp. 29-35 (in Korean).
  43. Yoon, S., Lee, S. R., Kang, S. H. and Park, D. W. (2015). "A statistical mobilization criterion for debris-flow." Journal of the Korean Geotechnical Society, Vol. 31, No. 6, pp. 59-69, DOI: http://dx.doi.org/10.7843/kgs.2015.31.6.59 (in Korean).