• Title/Summary/Keyword: Landing System

Search Result 465, Processing Time 0.024 seconds

Flight Measurement and Analysis for Signal Influence of CVOR and DVOR by It's Surrounding Obstacle Condition (CVOR과 DVOR의 장애물 영향 비행측정 및 비교 분석)

  • Park, Hyeong-Taek;Hwang, Byong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1206-1212
    • /
    • 2007
  • International Civil Aviation Organization(ICAO) adopted VOR(Very high frequency Omni-Range) as an international standard air navigation system in 1949 and recommended every country to make use of it in formulating air route and guiding take-off and landing of an aircraft. VOR is quite a useful navigation system so that more than 2,000 VORs are currently installed all over the world including 39 in the Republic of Korea; however, VOR signal could be easily affected by its circumstance like a mountainous area because it provides navigation information to an aircraft through AM and FM of VHF carrier. There are two types of VOR which are defined according to a design methode. Therefore this study intends to investigate which type of VOR is suitable for mountainous area. For that purpose, the performance of each CVOR and DVOR is measured and analyzed by using an aircraft equipped with measuring instruments. The analyzed result will be applied and utilized in selecting the VOR type, so it could be a feasible solution of problem related to the VOR relocation due to its insufficient performance in the future.

The Study of Dynamic Safety Using M&S for Integrated Electro-mechanical Actuator Installed on Aircraft (M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구)

  • Lee, Sock-Kyu;Lee, Byoung-Ho;Lee, Jeung;Kang, Dong-Seok;Choi, Kwan-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.108-115
    • /
    • 2015
  • Electro-mechanical actuator installed on aircraft consists of a decelerator which magnifies the torque in order to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. Electro-mechanical actuator controls aircraft altitude, position, landing, takeoff, etc. It is an important part of a aircraft. Aircraft maneuvering causes vibrations to electro-mechanical actuator. Vibrations may result in structural fatigue. For that reason, it is necessary to analyze the system structural safety. In order to analyze the system structural safety. It is needed reasonable finite element model and structural response stress closed to real value. In this paper, analytic model is derived by using the simplified finite element model, and damping ratio which is closely related to response stress is derived by using modal test. So, we developed analytic model in less than 10 % error rate, compared with modal test. Vibration response stress close to real value was estimated from analytic model modified with modal experimental damping ratio. Estimation method for damping ratio with empirical formula was suggested partly. Finally, It was proved that electro-mechanical actuator had reasonable structure margin of safety at environmental random $3{\sigma}$ stress during life cycle.

A Study on Aircraft Flight Stability of T-50 Control Surface Reconfiguration Mode in PA Configuration (T-50 착륙외장 형상에서 조종면 형상 재구성 모드의 항공기 비행)

  • Kim, Jong-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.93-100
    • /
    • 2006
  • Modern versions of supersonic jet fighter aircraft using a digital flight-by-wire flight control system design utilizes a control surface reconfiguration in order to guarantee the aircraft flight stability when a control surface is failed. The T-50 flight control laws are designed such that the surface reconfiguration mode controls the aircraft using non-failed control surfaces when one of the control surfaces is failed. In this paper, linear analysis and HQS(Handling Quality Simulator) pilot simulations are performed to analyze the flight stability and handling quality when the surface reconfiguration mode is engaged for aircraft landing configuration. It is found that the aircraft flight stability and handling quality is satisfied to level 1 requirements when the T-50 flight control law is changed to the surface reconfiguration mode.

A Study on UAV Flight Control System HILS Test Environment (무인항공기 비행제어 HILS 시험환경 연구)

  • Byun, Jinku;Hur, Gi-Bong;Lee, KwangHyun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.316-323
    • /
    • 2016
  • A UAV(Unmanned Aerial Vehicle) flies along pre-programed navigation points(in-flight, take-off, or landing) automatically without pilot input. Even though UAVs fly differently from general piloted aircraft as the pilot controls the aircraft from a ground station through means of a data-link system. Occasionally, the data-link connection can be lost for any number of reasons, in which case, the FLCC(Flight control Computer) must automatically switch to autopilot to continue flying. Hence, the FLCC is a flight-critical component that must be throughly tested and validated. This paper discusses the development of a HILS(Hardware in the Loop Simulation) test environment designed to simulate real flight conditions to verify the FLCC satisfies flying quality requirements and maintains robustness despite any potential malfunctions or emergency situations.

Control Law Design for a Tilt-Duct Unmanned Aerial Vehicle using Sigma-Pi Neural Networks (Sigma-Pi 신경망을 이용한 틸트덕트 무인기의 제어기 설계연구)

  • Kang, Youngshin;Park, Bumjin;Cho, Am;Yoo, Changsun
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • A Linear parameterized Sigma-Pi neural network (SPNN) is applied to a tilt-duct unmanned aerial vehicle (UAV) which has a very large longitudinal stability ($C_{L{\alpha}}$). It is uncontrollable by a proportional, integral, derivative (PID) controller due to heavy stability. It is shown that the combined inner loop and outer loop of SPNN controllers could overcome the sluggish longitudinal dynamics using a method of dynamic inversion and pseudo-control to compensate for reference model error. The simulation results of the way point guidance are presented to evaluate the performance of SPNN in comparison to a PID controller.

Strategies for Driving and Egress for the Vehicle of a Humanoid Robot in the DRC Finals 2015 (DRC Finals 2015 에서 휴머노이드 로봇의 자동차 운전과 하차에 관한 전략)

  • Ahn, DongHyun;Shin, JuSeong;Jun, Youngbum;Sohn, Kiwon;Jang, Giho;Oh, Paul;Cho, Baek-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.912-918
    • /
    • 2016
  • This paper presents various strategies for humanoid vehicle driving and egress tasks. For driving, a tele-operating system that controls a robot based on a human operator's commands is built. In addition, an autonomous assistant module is developed for the operator. Normal position control can result in severe damage to robots when they egress from vehicles. To prevent this problem, another approach that mixes various joint control techniques is adopted in this study. Additionally, a footplate is newly designed and attached to the vehicle floor for the ground landing phase of the egress task. The attached plate enables the robot to step down onto the ground in a safe manner. For stable locomotion, a balance controller is designed for the humanoid. For the design of the controller, the robot is modeled using an inverted pendulum that consists of a spring and a damper. Then, a state feedback controller (with pole placement and a state observer) is built based on the simplified model. Many approaches that are presented in this paper were successfully applied to a full-sized humanoid, DRC-HUBO+, in the DARPA Robotics Challenge Finals, which were held in the United States in 2015.

Virtual Flight Test for Conceptual Lunar Lander Demonstrator (달 착륙선 개념설계형상 검증모델 가상비행시험)

  • Lee, Won-Beom;Rew, Dong-Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • The conceptual design lunar lander demonstrator has been developed to use as a test bed for advanced spacecraft technologies and to test a prototype planetary lander capable of vertical takeoff and landing. Size of the lunar lander demonstrator is the same as that of lunar lander conceptually designed, however, the weight of lunar lander demonstrator is designed in 1/6 scale in consideration of gravity difference between moon and earth. The thruster clustering and virtual flight test were performed in the demonstrator fixed on the ground. The demonstrator ground test has been conducted for two months in the test site for the solid motor combustion of the Goheung Flight Center. The purposes of ground test of demonstrator are to demonstrate and verify essential electronics, propulsion system, control algorithm, embedded software, structure and system operation technologies before developing the flight model lander. This paper is described about the virtual flight test including test configuration, test aims and test facilities

Virtual Ground Based Augmentation System

  • Core, Giuseppe Del;Gaglione, Salvatore;Vultaggio, Mario;Pacifico, Armando
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.33-37
    • /
    • 2006
  • Since 1993, the civil aviation community through RTCA (Radio Technical Commission for Aeronautics) and the ICAO (International Civil Air Navigation Organization) have been working on the definition of GNSS augmentation systems that will provide improved levels of accuracy and integrity. These augmentation systems have been classified into three distinct groups: Aircraft Based Augmentation Systems (ABAS), Space Based Augmentation Systems (SBAS) and Ground Based Augmentation Systems (GBAS). The last one is an implemented system to support Air Navigation in CAT-I approaching operation. It consists of three primary subsystems: the GNSS Satellite subsystem that produces the ranging signals and navigation messages; the GBAS ground subsystem, which uses two or more GNSS receivers. It collects pseudo ranges for all GNSS satellites in view and computes and broadcasts differential corrections and integrity-related information; the Aircraft subsystem. Within the area of coverage of the ground station, aircraft subsystems may use the broadcast corrections to compute their own measurements in line with the differential principle. After selection of the desired FAS for the landing runway, the differentially corrected position is used to generate navigation guidance signals. Those are lateral and vertical deviations as well as distance to the threshold crossing point of the selected FAS and integrity flags. The Department of Applied Science in Naples has create for its study a virtual GBAS Ground station. Starting from three GPS double frequency receivers, we collect data of 24h measures session and in post processing we generate the GC (GBAS Correction). For this goal we use the software Pegasus V4.1 developed from EUROCONTROL. Generating the GC we have the possibility to study and monitor GBAS performance and integrity starting from a virtual functional architecture. The latter allows us to collect data without the necessity to found us authorization for the access to restricted area in airport where there is one GBAS installation.

  • PDF

A Study on Development of Certification Basis for VTOL UAS Based on Analysis of Certification Criteria for Fixed/Rotary Wing UAS and SC-VTOL (고정익/회전익 인증기준 및 수직이착륙 특수기술기준 분석 기반의 수직이착륙 무인항공기 인증기준 개발 방안)

  • Yoo, Minyoung;Kim, Suho;Oh, Yeonkyeong;Jin, Kyunghoon;Lee, Hwan;Kim, Woogyeom;Gong, Byeongho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.16-23
    • /
    • 2021
  • Domestic and foreign manufacturers are developing VTOL UASs in various shapes in line with demand for future technologies. UASs have been developed in a shape classified as fixed/rotary wing, and verified by appropriate certification standards. However, airworthiness certification of recent VTOL UASs is strict with the absence of VTOL-specific certification standards. In this paper, criteria applicable to VTOL UAS were presented through analysis of STANAG-4671 and STANAG-4702, which are certification standards for fixed/rotary wing UAS of the North Atlantic Treaty Organization (NATO) and the Special Condition for VTOL Aircraft (SC-VTOL) of European Aviation Safety Agency (EASA). For this, the categorization criteria of general/fixed-wing/VTOL characteristics were established for each standard item and utilized for analysis.

Advanced Estimation Model of Runway Visual Range using Deep Neural Network (심층신경망을 이용한 활주로 가시거리 예측 모델의 고도화)

  • Ku, SungKwan;Park, ChangHwan;Hong, SeokMin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.491-499
    • /
    • 2018
  • Runway visual range (RVR), one of the important indicators of aircraft takeoff and landing, is affected by meteorological conditions such as temperature, humidity, etc. It is important to estimate the RVR at the time of arrival in advance. This study estimated the RVR of the local airport after 1 hour by upgrading the RVR estimation model using the proposed deep learning network. To this end, the advancement of the estimation model was carried out by changing the time interval of the meteorological data (temperature, humidity, wind speed, RVR) as input value and the linear conversion of the results. The proposed method generates estimation model based on the past measured meteorological data and estimates the RVR after 1 hour and confirms its validity by comparing with measured RVR after 1 hour. The proposed estimation model could be used for the RVR after 1 hour as reference in small airports in regions which do not forecast the RVR.