• Title/Summary/Keyword: Landfill liner

Search Result 121, Processing Time 0.026 seconds

An Evaluation of Interface Shear Strength between Geosynthetic Clay Liner and Geomembrane (토목섬유 점토 차수재(GCL)와 지오멤브레인(GM)의 접촉 전단강도 평가)

  • 서민우;김동진;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.137-146
    • /
    • 2002
  • Geomembrane, compacted clay liner, and geosynthetic clay liner (GCL) are widely used to prevent leachate from leaking to adjacent geo-environment at a municipal solid waste (MSW) landfill. Interface shear strength between GCL and geomembrane installed at a landfill side slope is important properties for the safe design of side liner or final cover systems. The interface shear strength between two geosynthetics was estimated by a large direct shear test in this study. The shear strength was evaluated by the Mohr-Coulomb failure criterion. The effects of normal stress, hydration or dry condition, and a hydration method were investigated. The test results show that the interface shear strength and shear behavior varied depending up on the level of normal stress, the type of geosynthetic combinations, and a hydration method. When GCLs were sheared after being hydrated under 6kPa loading, the results were consistent with those published by other researchers. Summaries of friction angles, normal stress and hydration condition is presented. These friction angles could be used as a reference value at a site where similar geosynthetics are installed.

Study of Permeability of Bentonite Mixtured Soil (벤토나이트 혼합토의 투수성에 관한 연구)

  • Kim, Sung-Hwan;Oh, Young-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.805-812
    • /
    • 2009
  • Permeation water resulting in the reclaimed land of waste can possibly cause the second pollution, such as the underground water and environmental pollution. Accordingly, Liner layer has been installed in the reclaimed land of waste to block and purify permeation water and prevent this second pollution. The material used as Liner layer is the one for water resistance and that of less than permeability coefficient $1{\times}10^{-7}cm/sec$ is widely used. As it is very difficult to secure in bulk this natural clay with low permeability around the field, the suitable way to secure low permeable material is that we use blend with good watertighness by mixing it with natural soil which is spread in the site. While this mixed soil which can resist water is commonly used in the site, bentonite mixed soil which is widely used as Liner layer in the reclaimed land of waste is recognized in Liner and durability. In this study, the engineering characteristics of soil-bentonite mixed liner are investigated using the laboratory hydraulic conductivity and uni-axial strength tests. The soil used for the liner is the clay soil located near the site. Mixing ratio of the bentonite which satisfies the requirement of hydraulic conductivity is determined and the optimum mixing ratio of bentonite is recommended for the landfill. After the mixed liner is constructed using the optimum mixing ratio of bentonite, the block samples of the constructed liner are obtained and the strength tests were performed. The hydraulic and strength properties of the liner for construction of the waste landfill were both satisfactory.

  • PDF

사용종료매립장의 관리실태 및 주변 토양오염특성 연구

  • 나경호;김문정;김태화;최승석;손진석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.124-127
    • /
    • 2001
  • The purpose of this study is to investigate and evaluate management status of use-completed landfill in Kyunggido area and characteristics of its surrounding soil contamination. The soil samples showed Showed the anxious standard of soil contamination. The effect of liner system and leachate treatment unit showed very low because of showing similar concentration with non system landfill. Therefore, the further supplementation of leachate treatment unit, rainfall exclusion unit, LFG exclusion unit etc. must be performed to ensure a efficient management for landfills.

  • PDF

A Study on the Strength of Geotextile and the Influence of Settlement in a Waste Landfill (폐기물 매립지 인공합성 차수재 강도와 침하영향에 관한 연구)

  • 장연수;임학수;권강오
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.241-245
    • /
    • 2000
  • In this paper, the results of the direct shear interface friction test is introduced to understand interface friction between geosynthetic materials that are required for analyzing slope stability of the liner system of waste landfills. Tensile stresses that occur in a liner system due to differential settlement with waste load are estimated using FLAC. It was shown that HDPE/geocomposite inteface friction angle is 11.9$^{\circ}$, HDPE/wastes is 12.0$^{\circ}$ and geotextile/wastes is 28.0$^{\circ}$. Tensile stress due to settlement in a foundation of landfill is well within the limits of tensile strength regulated by waste treatment law.

  • PDF

Stress-Strain of Geomembranes In Landfill Under Punctiform Loads (폐기물매립장 차수재의 꿰뚫림 하중에 의한 응력-변형)

  • 이광열;정진교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.55-65
    • /
    • 2001
  • Geotextiles are usually constructed as a protective layer of geomembranes in liner systems for the solid waste landfill. A protective layer and geomembrane are susceptible to mechanical damage by coarse grains in the overlying drainage layer. In this study, therefore, the strain behavior of geotextile protective layers was investigated using three different types of devices for developing punctiform loads. The results of the study showed that the rates of strain was different depend upon device types for functiform loads. Also, It was found that the increases in strain was approximately linear in range 20 to 6$0^{\circ}C$ , and pp-filament non-woven geotextiles yielded a better efficiency than pp-staple fiber non-woven geotextiles.

  • PDF

A Study of Landfill Coyer Liners by Freezing/Thawing (동결/융해에 따른 폐기물 매립지 복토층 연구)

  • Jai-Young Lee
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.103-109
    • /
    • 1996
  • The cover liners at municipal and hazardous waste landfill is not emphasized as much as the bottom liners. However, one of the most effective reason of landfill destroy is the cover liner failure. The cover system at municipal and hazardous waste landfill, 1 perform the following functions, at minimum: promote surface runoff, impede infiltration, protect settlement in the landfill, and provide a buffer from surface exposure of the waste. This research was to expand the existing knowledge base of landfill cover liner behavior during period of freeze/thaw Also, the great Lysimeter was built in the laboratory to provide as much as same condition with the field and three designs were simulated by actual cover materials. The result of simulation indicated the clay was effected by freezing/thawing. The degradation of cover liners in the frost penetration affects the physical, engineering properties of clay. these factors may consider to design and construct of the landfill. This paper provides the description of testing cover liners, experimental results and a discussion of the results of the simulation.

  • PDF

Experimental Study on Engineering Characteristic of the Waste Landfill Soil Admixed Linear (폐기물매립지 토사계 혼합 차수재의 공학적 특성에 대한 실험적 연구)

  • Chang, Yongchai;Kim, Jinchun;Jeong, Ogki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Leachates resulting from the waste landfill of waste can possibly cause the second pollution, such as the underground water and environmental pollution. Accordingly, Liner layer has been installed in the reclaimed land of waste to block and purify permeation water to and prevent this second pollution. The material used as Liner layer should have water resistance and be less than permeability coefficient of $1{\times}10^{-7}$ cm/sec. As it is very difficult to get this kind of natural clay with low permeability around the field, the suitable way to get the low permeable material is to use blend with good watertighness by mixing it with natural soil which is spread in the site. While this mixed soil, which can resist water, is commonly used in the site, namely, bentonite and MCG cementious mateiral mixed soil, which is widely used as Liner layer in the reclaimed land of waste, is recognized in Liner and durability. The study was performed to find the effect of additive of the bottom liner in the waste landfill. The aim of this paper is to explain of the field application examples as well as the data of experimental research with the engineering properties of Liner layer of the reclaimed land.

  • PDF

A Study on the Variation of the Coefficient of Leachate as Final Cover Systems in the Landfill (폐기물 매립지의 최종복토 구조에 따른 침출계수 변화에 관한 연구)

  • 임은진;이재영;최상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.2
    • /
    • pp.48-53
    • /
    • 2004
  • This study is objected to estimate the variation of the coefficient of leachate according to designs in landfill cover systems. Design (a) is the unsanitary landfill cover system with 50 cm soil. But Design (b), (c) are sanitary cover systems which are composed of soil top layer, drainage layer, barrier liner(Design (b): Geomembrane(1.5 mm) and compacted clay liner(30 cm), Design (c) compacted clay liner(45 cm)), gas venting layer. Quantity of leachate estimates Rational Method generally and depend on the coefficient of leachate, on one of the factors in Rational Method largely. The coefficient of leachate is defined as the leachate production ratio result from incident precipitation. To estimate the variation of the coefficient of leachate, the authors use HELP(Hydrologic Evaluation of Landfill Performance) Simulation and Pilot Test. As a result of HELP Simulation, the coefficient of leachate is 0.36∼0.42 in Design (a) and 0.03∼0.15 in Design (b), (c) according to designs in landfill cover systems and quality of barrier liner placement. These numerical values are similar to 0.13 with the coefficient of leachate in Pilot Test.