• Title/Summary/Keyword: Land-sea breeze

Search Result 108, Processing Time 0.022 seconds

Characteristics of Surface and Synoptic Meteorology During High-Ozone Episodes in the Greater Seoul Area (서울.수도권 지역 고농도 오존 사례의 지상 및 종관 기상 특성)

  • 오현선;김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.441-455
    • /
    • 1999
  • Meteorological characteristics of three high-ozone episodes in the Greater Seoul Area, selected on the basis of morning-average wind direction and speed for the 1990~1997 period, were investigated. Three high-ozone episodes thus selected were seven days of July 3~9, 1992, nine days of July 21~29, 1994, and three days of August 22~24, 1994. Along with surface meteorological data from the Seoul Weather Station, surface and 850-hPa wind fields over the Northest Asia around the Korean Peninsula were used for the analysis. In the July 1992 episode, westerly winds were most frequent as a result of the influence of a high-pressure system in the west behind the trough. In contrast, in the July 1994 episode, easterly winds were most frequent due to the effect of a typhoon moving north from the south of Japan. Despite different prevailing wind directions in the two episodes, the peak ozone concentration of each episode always occurred when a sea-land breeze developed in association with weak synoptic forcing. The August 1994 episode, selected as being representative of calm conditions, was another typical example in which peak ozone concentration rose to 322 ppb under the well-developed sea-land breeze. All three high-ozone episodes were terminated by precipitation, and subsequent rises in ozone concentrations were also suppressed by a series of precipitation afterwards. In particular, two heavy rainfalls were the main reason why the August 1994 episode, with the highest and second-highest ozone concentrations during the 1990~1997 period, lasted for only a few days.

  • PDF

Distribution Characteristics and Background Air Classification of PM2.5 OC and EC in Summer Monsoon Season at the Anmyeondo Global Atmosphere Watch (GAW) Regional Station (안면도 기후변화감시소의 여름철 PM2.5 OC와 EC 분포 특성 및 배경대기 구분)

  • Ham, Jeeyoung;Lee, Meehye;Ryoo, Sang-Boom;Lee, Young-Gon
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.429-438
    • /
    • 2019
  • Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured with Sunset Laboratory Model-5 Semi-Continuous OC/EC Field Analyzer by NIOSH/TOT method at Anmyeondo Global Atmosphere Watch (GAW) Regional Station (37°32'N, 127°19'E) in July and August, 2017. The mean values of OC and EC were 3.7 ㎍ m-3 and 0.7 ㎍ m-3, respectively. During the study period, the concentrations of reactive gases and aerosol compositions were evidently lower than those of other seasons. It is mostly due to meteorological setting of the northeast Asia, where the influence of continental outflow is at its minimum during this season under southwesterly wind. While the diurnal variation of OC and EC were not clear, the concentrations of O3, CO, NOx, EC, and OC were evidently enhanced under easterly wind at night from 20:00 to 8:00. However, the high concentration of EC was observed concurrently with CO and NOx under northerly wind during 20:00~24:00. It indicates the influence of thermal power plant and industrial facilities, which was recognized as a major emission source during KORUS-AQ campaign. The diurnal variations of pollutants clearly showed the influence of land-sea breeze, in which OC showed good correlation between EC and O3 in seabreeze. It is estimated to be the recirculation of pollutants in land-sea breeze cycle. This study suggests that in general, Anmyeondo station serves well as a background monitoring station. However, the variation in meteorological condition is so dynamic that it is primary factor to determine the concentrations of secondary species as well as primary pollutants at Anmyeondo station.

Comparisons of Models for Thermal Internal Boundary Layer Hight Based on Measurements of the Water Tank Experiment

  • Koo, Youn-Seo;Yoon, Hee-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E2
    • /
    • pp.97-103
    • /
    • 2000
  • A Thermal Internal Boundary Layer(TIBL) develops over the landside from the coast due to the surface temperature difference between the land the sea when sea breeze froms. The TIBL plays an important role in determining the pollutant concentrations where the plume emitted from a tall stack near the coast fumigates to the ground. The fumigation results in the high ground the TIBL height from the available meterological data is very important. The TIBL models avaliable in the literature were analyzed to identify the suitable model to apply in the fumigation. The TIBL heights predicted by the existing models were compared with the measurements in the water tank experiment. The results show that the TIBL models by Raynor is appropriate to predict the height of TIBL.

  • PDF

Spatial and temporal distribution of Wind Resources over Korea (한반도 바람자원의 시공간적 분포)

  • Kim, Do-Woo;Byun, Hi-Ryong
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.171-182
    • /
    • 2008
  • In this study, we analyzed the spatial and temporal distribution of wind resources over Korea based on hourly observational data recorded over a period of 5 years from 457 stations belonging to Korea Meteorological Administration (KMA). The surface and 850 hPa wind data obtained from the Korea Local Analysis and Prediction System (KLAPS) and the Regional Data Assimilation and Prediction System (RDAPS) over a period of 1 year are used as supplementary data sources. Wind speed is generally high over seashores, mountains, and islands. In 62 (13.5%) stations, mean wind speeds for 5 years are greater than $3ms^{-1}$. The effects of seasonal wind, land-sea breeze, and mountain-valley winds on wind resources over Korea are evaluated as follows: First, wind is weak during summer, particularly over the Sobaek Mountains. However, over the coastal region of the Gyeongnam-province, strong southwesterly winds are observed during summer owing to monsoon currents. Second, the wind speed decreases during night-time, particularly over the west coast, where the direction of the land breeze is opposite to that of the large-scale westerlies. Third, winds are not always strong over seashores and highly elevated areas. The wind speed is weaker over the seashore of the Gyeonggi-province than over the other seashores. High wind speed has been observed only at 5 stations out of the 22 high-altitude stations. Detailed information on the wind resources conditions at the 21 stations (15 inland stations and 6 island stations) with high wind speed in Korea, such as the mean wind speed, frequency of wind speed available (WSA) for electricity generation, shape and scale parameters of Weibull distribution, constancy of wind direction, and wind power density (WPD), have also been provided. Among total stations in Korea, the best possible wind resources for electricity generation are available at Gosan in Jeju Island (mean wind speed: $7.77ms^{-1}$, WSA: 92.6%, WPD: $683.9Wm^{-2}$) and at Mt. Gudeok in Busan (mean wind speed: $5.66ms^{-1}$, WSA: 91.0%, WPD: $215.7Wm^{-2}$).

SST Effect upon Numerical Simulation of Atmospheric Dispersion (대기확산의 수치모의에서 SST 효과)

  • 이화운;원경미;조인숙
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.767-777
    • /
    • 1999
  • In the coastal region air flow changes due to the abrupt change of surface temperature between land and sea. So a numerical simulation for atmospheric flow fields must be considered the correct fields of sea surface temperature(SST). In this study, we used variables such as latent heat flux, sensible heat flux, short and long wave radiation of ocean and atmosphere which exchanged across the sea surface between atmosphere and ocean model. We found that this consideration simulated the more precise SST fields by comparing with those of the observated results. Simulated horizontal SST differences in season were 2.5~4$^{\circ}C$. Therefore we simulated the more precise atmospheric flow fields and the movement and dispersion of the pollutants with the Lagrangian particle dispersion model. In the daytime dispersion pattern of the pollutants emitted from ship sources moved toward inland, in the night time moved toward sea by land/sea breeze criculation. But air pollutants dispersion can be affected by inland topography, especially Yangsan and coastal area because of nocturnal wind speed decrease.

  • PDF

A Three Dimensional Numerical Simulation of $SO_2$ Concentration in Relation with Atmospheric Flow in Pusan Area, Korea (부산지역에서의 대기흐름과 관련된 $SO_2$농도 3차원 수치모의)

  • 장은숙;이화운
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.359-367
    • /
    • 1997
  • The Characteristics of atmospheric flow and dispersion of air pollutants in the mountainous coastal area were studied using three-dimensional model by the combination of land/sea breezes and transport. It was then applied to Pusan city. As the urban area considered In this study is located in a mountainous coastal area, the atmospheric flow is strongly affected by the land/sea breezes and mountain/valley winds. The typical effects of land/sea breezes on the dispersion and the characteristics of pollutants movement in the region were analysed. The model has been proved to be an useful tool to prodict real time air pollutants transport as shown by the results of application studies In Pusan, Korea which Is an urbanized coastal area with mountainous topography. It was found that the pollutants are differently transported and concentrated as going Inland by the Influence of the sea breeze with topographic changes. By comparing the pollutants concentrations of the stimulated results with those of the observational results, It is shown that stimulated results in this study are in qualitative agreement with observational ones.

  • PDF

Meteorological Relations and Characteristics of Fine Particles at Guducksan in Busan (부산 구덕산의 미세먼지(PM10) 농도 특성과 기상학적 관련성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.883-892
    • /
    • 2015
  • The study investigates the characteristics of $PM_{10}$ concentration in Guducsan air quality observatory and in particular, analyzes the relationship between sudden increase of $PM_{10}$ concentration in the morning of spring 2014 and meteorological parameters. $PM_{10}$ concentration in April was $46.9{\mu}g/m^3$, the highest, followed by $45.5{\mu}g/m^3$ and $44.6{\mu}g/m^3$ in March and May, and $21.9{\mu}g/m^3$ in August. The low concentration in the early morning appeared on 0800 LST in spring, summer, and fall, whereas it emerged on 0900 LST in winter. High concentration in daytime lasted from 1200 LST to 1500 LST in spring and fall, whereas it continued from 1300 LST to 1600 LST in winter. The findings of $PM_{10}$ concentration and change of meteorological parameters in Guducsan from April 20th to 27th in 2014 are as follows. The low concentration at dawn and in the morning decreased due to strong land breeze. Also, the sudden increase of $PM_{10}$ concentration in the morning was attributable to low wind speed. Lastly, the sudden decrease of $PM_{10}$ concentration in the afternoon was attributed to diffusion by strong sea breeze.

The Preliminary EMC Analysis Between the COMS RE and the GEO Launch Vehicles RS (통신해양기상위성 복사방출과 정지궤도 발사체 복사감응과의 전자파 적합성 해석)

  • Kim, Eui-Chan;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.774-778
    • /
    • 2010
  • In this paper, the preliminary EMC analysis process between the Communication, Ocean and Meteorological Satellite (COMS) and the Geostationary Earth Orbit (GEO) launch vehicles in the frequency range is described. The considered launch vehicles are Arian Ⅴ, Sea Launch, Land Launch, Atlas III&Ⅴ, Delta IV, Proton M/breeze M, Soyuz, H II-Aa. The launch vehicle Radiated Susceptibility (RS) specifications have been compared to COMS satellite Radiated Emission (RE) limits. The COMS Radiated Emission (RE) level is determined by calculating the radiated field equal to the quadratic sum of radiated emissions of each equipment switched "ON" during launch. As a result, The RS requirements of Arian V, Atlas III&V and Delta IV lauchers are compliant with COMS RE limits. The negative margins appear between the others launch vehicle RS (Sea Launch, Land Launch, Proton M/Breeze M, Soyuz and H II-A) and COMS RE. Then, if the launchers that have negative margin were chosen by the customer, The EMC tests should be performed at satellite level in order to demonstrate the compatibility with respect to launch vehicles requirements.

A Study on Changes in Local Meteorological Fields due to a Change in Land Use in the Lake Shihwa Region Using Synthetic Land Cover Data and High-Resolution Mesoscale Model (합성토지피복자료와 고해상도 중규모 모형을 이용한 시화호 지역의 토지이용 변화에 따른 주변 기상장 변화 연구)

  • Park, Seon Ki;Kim, Jee-Hee
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.405-414
    • /
    • 2011
  • In this study, the influence of a change in land use on the local weather fields is investigated around the Lake Shihwa area using synthetic land cover data and a high-resolution mesoscale model - the Weather Research and Forecasting (WRF). The default land cover data generally used in the WRF is based on the land use category of the United States Geological Survey (USGS), which erroneously presents most land areas of the Korean Peninsula as savannas. To revise such a fault, a multi-temporal land cover data, provided by the Ministry of Environment of Korea, was employed to generate a land cover map of 2005 subject to the land use in Korea at that time. A new land cover map of 1989, before the construction of the Lake Shihwa, was made based on the 2005 map and the Landsat 4-5 TM satellite images of two years. Over the areas where the land use had been changed (e.g., from sea to wetlands, towns, etc.) due to the Lake Shihwa development project, the skin temperature decreased by up to $8^{\circ}C$ in the winter case while increased by as much as $14^{\circ}C$ in the summer case. Changes in the water vapor mixing ratio were mostly affected by advection and topography in both seasons, with considerable increase in the summer case due to continuous sea breeze. Local decrease in water vapor occurred over high land use change areas and/or over downstream of such areas where alteration in wind fields were induced by changes in skin temperature and surface roughness at the areas of land use changes. The albedo increased by about 0.1% in the regions where sea was converted into wetland. In the regions where urban areas were developed, such as Songdo New Town and Incheon International Airport, the albedo increased by up to 0.16%.

Modeling the Impacts of Increased Urbanization on Local Meteorology in the Greater Seoul Area (수도권지역 도시화가 국지기상에 미치는 영향 모델링)

  • Kang, Yoon-Hee;Kim, Yoo-Keun;Oh, In-Bo;Hwang, Mi-Kyoung;Song, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1361-1374
    • /
    • 2010
  • The impact of urbanization on local meteorology (e.g., surface temperature, PBL height, wind speed, etc.) in the Greater Seoul Area (GSA) was quantitatively evaluated based on a numerical modeling approach during a 1-month period of 2001 (9 Sep. through 8 Oct. 2001). The analysis was carried out by two sets of simulation scenarios: (1) with the global land use and topographic data from the U.S. Geological Survey (USGS) in 1990s (i.e., LU-USGS case) and (2) with the land use data from the Environmental Geographic Information System (EGIS) along with the 3 sec elevation data from the Shuttle Radar Topography Mission (SRTM) in 2000s (i.e., LU-EGIS case). The extension of urban areas in the GSA (especially, the southern parts of Seoul) accounted for 1.8% in the LU-USGS case and 6.2% in the LU-EGIS case. For the simulations, the surface temperature and PBL height due to urbanization in the LU-EGIS case was higher (the differences of up to $0.1^{\circ}C$ and 36 m, respectively) than those in the LU-USGS case, whereas the wind speed (up to 0.3 $ms^{-1}$) in the former was lower than that in the latter at 1500 LST. The increase in surface temperature due to urbanization in the GSA (especially, the southern parts of Seoul) was led to the strong convergence of air masses, causing the early sea breeze and its rapid propagation to inland locations. In addition, the vertical mixing motion in the extended urban areas for the LU-EGIS case was predicted to be stronger than that for the LU-USGS case and vice versa for the original urban areas.