DOI QR코드

DOI QR Code

Modeling the Impacts of Increased Urbanization on Local Meteorology in the Greater Seoul Area

수도권지역 도시화가 국지기상에 미치는 영향 모델링

  • Kang, Yoon-Hee (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Yoo-Keun (Division of Earth Environmental System, Pusan National University) ;
  • Oh, In-Bo (Environmental Health Center, University of Ulsan) ;
  • Hwang, Mi-Kyoung (Division of Earth Environmental System, Pusan National University) ;
  • Song, Sang-Keun (Division of Earth Environmental System, Pusan National University)
  • 강윤희 (부산대학교 지구환경시스템학부) ;
  • 김유근 (부산대학교 지구환경시스템학부) ;
  • 오인보 (울산대학교 환경보건센터) ;
  • 황미경 (부산대학교 지구환경시스템학부) ;
  • 송상근 (부산대학교 지구환경시스템학부)
  • Received : 2010.07.27
  • Accepted : 2010.12.01
  • Published : 2010.12.31

Abstract

The impact of urbanization on local meteorology (e.g., surface temperature, PBL height, wind speed, etc.) in the Greater Seoul Area (GSA) was quantitatively evaluated based on a numerical modeling approach during a 1-month period of 2001 (9 Sep. through 8 Oct. 2001). The analysis was carried out by two sets of simulation scenarios: (1) with the global land use and topographic data from the U.S. Geological Survey (USGS) in 1990s (i.e., LU-USGS case) and (2) with the land use data from the Environmental Geographic Information System (EGIS) along with the 3 sec elevation data from the Shuttle Radar Topography Mission (SRTM) in 2000s (i.e., LU-EGIS case). The extension of urban areas in the GSA (especially, the southern parts of Seoul) accounted for 1.8% in the LU-USGS case and 6.2% in the LU-EGIS case. For the simulations, the surface temperature and PBL height due to urbanization in the LU-EGIS case was higher (the differences of up to $0.1^{\circ}C$ and 36 m, respectively) than those in the LU-USGS case, whereas the wind speed (up to 0.3 $ms^{-1}$) in the former was lower than that in the latter at 1500 LST. The increase in surface temperature due to urbanization in the GSA (especially, the southern parts of Seoul) was led to the strong convergence of air masses, causing the early sea breeze and its rapid propagation to inland locations. In addition, the vertical mixing motion in the extended urban areas for the LU-EGIS case was predicted to be stronger than that for the LU-USGS case and vice versa for the original urban areas.

Keywords

References

  1. 강전호, 서명석, 곽종흠, 2007, 아시아 지역 지면피복자료 비교 연구: USGS, IGBP, 그리고 UMd, 대기, 17(2), 159-169.
  2. 경기개발연구원, 2008, 경기도 시가지확산에 따른 공간적 영향 연구.
  3. 김유근, 김현수, 정주희, 송상근, 2010, 수도권지역 미래 도시성장에 따른 기온변화 추정, 한국환경과학회지, 19(2), 237-245. https://doi.org/10.5322/JES.2010.19.2.237
  4. 오인보, 김유근, 황미경, 2004, 연안도시지역 해풍지연이 오존분포에 미치는 영향, 한국대기환경학회지, 20(3), 345-360.
  5. 이현주, 이귀옥, 원경미, 이화운, 2009, 최신토지피복자료를 이용한 대구시의 열환경 수치모의, 한국대기환경학회지, 25(3), 117-254. https://doi.org/10.5572/KOSAE.2009.25.3.196
  6. 정주희, 김유근, 2009, 연안지역 특성에 따른 상세 토지피복도 적용 효과 및 기상장에 미치는 영향 분석, 한국대기환경학회지, 25(5), 432-449. https://doi.org/10.5572/KOSAE.2009.25.5.432
  7. 최현정, 이화운, 성경희, 2007, 복잡지형에서의 지표면 거칠기에 따른 오존 농도 수치모의, 한국대기환경학회지 23(4), 430-439. https://doi.org/10.5572/KOSAE.2007.23.4.430
  8. 황미경, 김유근, 오인보, 강윤희, 정주희, 2008, 상세 지표면상태 변화를 고려한 경계층 기상 수치모의 개선, 한국대기환경학회 2008 춘계학술대회 논문집, 549-550.
  9. Cheng, F. Y., Byun, D. W., 2008, Application of high resolution land use and land cover data for atmospheric modeling in the Houston-Galveston metropolitan area, Part I: Meteorological simulation results, Atmospheric Environment, 42, 7795-7811. https://doi.org/10.1016/j.atmosenv.2008.04.055
  10. Civerolo, K., Hogrefe, C., Lynn, B., Rosenthal, J., Ku, J. Y., Solecki, W., Cox, J., Small, C., Rosenzweig, C., Goldberg, R., Knowlton, K., Kinney, P., 2007, Estimating the effects of increased urbanization on surface meteorology and ozone concentrations in the New York City metropolitan region, Atmospheric Environment, 41, 1803-1818. https://doi.org/10.1016/j.atmosenv.2006.10.076
  11. Chen, F., Dudhia, J., 2001a, Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129, 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  12. Chen, F., Dudhia, J., 2001b, Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part II: Preliminary model validation. Monthly Weather Review, 129, 587-604. https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2
  13. Dudhia, J., 1993, A nonhydrostatic version of the Penn State-NCAR mesoscale model: validation tests and simulation of an Atlantic Cyclone and cold front, Monthly Weather Review, 121, 1493-1513. https://doi.org/10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2
  14. EPA, 2004, Multimedia Integrated Modeling System User Guide.
  15. Freits, E. D., Rozoff, C. M., Cotton, W. R., Dias, P. L. S., 2007, Interactions of an urban heat island and sea- breeze circulations during winter over the metropolitan area of San Paulo, Brazil, Boundary-Layer Meteorology, 122, 43-65. https://doi.org/10.1007/s10546-006-9091-3
  16. Grell, G., Dudhia, J., Stauffer, D., 1994, A description of the fifth-generation Penn State/NCAR Mesoscale Model(MM5), NCAR Tech. Note NCAR/TN-398+STR, 117.
  17. Khan, S. M., Simpson, R. W., 2001, Effect of a heat island on the meteorology of a complex urban airshed, Boundary-Layer Meteorology, 100, 487-506. https://doi.org/10.1023/A:1019284332306
  18. Lam, J. S. L., Lau, A. K. H., Fung, J. C. H., 2006, Application of refined land-use categories for high resolution mesoscale atmospheric modeling, Boundarylayer meteorology, 119, 263-288. https://doi.org/10.1007/s10546-005-9027-3
  19. Lin, C. Y., Chen, F., Huang, J. C., Chen, W. C., Liou, Y. A., Chen, W. N., Liu, S. C., 2008, Urban heat island effect and its impact on boundary layer development and land-sea circulation over northern Taiwan, Atmospheric Environment, 42, 5635-5649. https://doi.org/10.1016/j.atmosenv.2008.03.015
  20. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., Clough, S. A., 1997, Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave, Journal of Geophysical Research, 102(D14), 16663-16682. https://doi.org/10.1029/97JD00237
  21. Nataly, P., Alpert, P., 2001, Effects of land-use modification on potential increase of convection: A numerical mesoscale study over south Israel, Journal of Geophysical Research, 106, 22621-22634. https://doi.org/10.1029/2000JD900804
  22. National Center for Atmospheric Research (NCAR), 2005, PSU/NACR Mesoscale Modeling System, Tutorial Class Noates and User's Guide: MM5 modeling system Version 3.
  23. Reisner, J., Rasmussen, R. J., Bruintjes, R. T., 1998, Explicit forecasting of supercooled liquid water in winter stroms using the MM5 mesoscale model, Quarterly Journal of the Royal Meteorological Society, 124B, 1071-1107.
  24. Stauffer, D. R., Seaman, N. L., 1994, Multiscale four-dimensional data assimilation, Journal of Applied Meteorology, 33, 416-434. https://doi.org/10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2
  25. Stull, R. B., 1991, An introduction to boundary layer meteorology.
  26. Velazquez-Lozada A., Gonzalez, J. E., Winter, A., 2006, Urban heat island effect analysis for San Juan, Puerto Rico, Atmospheric Environment, 40, 1731-1741. https://doi.org/10.1016/j.atmosenv.2005.09.074
  27. Yoshikado, H., 1992, Numerical study of the daytime urban effect and its interaction with the sea breeze, Journal of Applied Meteorology, 31, 1146-1164. https://doi.org/10.1175/1520-0450(1992)031<1146:NSOTDU>2.0.CO;2
  28. Zehnder, J. A., 2002, Simple modifications to improve Fifth-Generation Pennsylvania state University-National Center for Atmospheric Research Mesoscale Model performance for the Phoenix, Arizona, Metropolitan Area, Journal of Applied Meteorology, 41, 971-979. https://doi.org/10.1175/1520-0450(2002)041<0971:SMTIFG>2.0.CO;2

Cited by

  1. Study on the Effects of Future Urban Growth on Surface Ozone Concentrations in the Seoul Metropolitan Region vol.24, pp.1, 2015, https://doi.org/10.5322/JESI.2015.24.1.31
  2. Exposure Assessments of Environmental Contaminants in Ansim Briquette Fuel Complex, Daegu(I) - Effect zone of environmental pneumoconiosis and fugitive dust - vol.25, pp.3, 2015, https://doi.org/10.15269/JKSOEH.2015.25.3.366