• Title/Summary/Keyword: Land breeze

Search Result 114, Processing Time 0.028 seconds

Numerical Simulation of Dispersion of a Vast Point Source in Coastal Area using the Local Wind Model (국지풍모델을 이용한 연안지역 거대 점오염원의 이류확산 수치모의)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.511-522
    • /
    • 1998
  • The two-stage numerical model was used to study the relation between three-dimensional local wind seal area for Korean peninsula. The first stave is three dimensional time-dependent local wind model which elves the wind field and vertical diffusion coefncient. The second stage is advection/duusion model which uses the results of the first stage as input data. First, wand fields on Korean peninsula for none synoptic scale wand showed typical land and sea breeze circulation, and the emitted particles were transported by sea breeze for daytime, emissions return to sea by land breeze for nighttime.

  • PDF

Numerical Simulation of Advection and Diffusion using the Local Wind Model in Pusan Coastal Area, Korea (부산 연안역에서의 국지풍모델을 이용한 이류확산 수치모의)

  • 김유근;이화운;전병일
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.29-41
    • /
    • 1996
  • The two-stage numerical model was used to study the relation between three-dimensional local wind model, advection/diffusion model of random walk method and second moment method on Pusan coastal area. The first stage is three dimensional time-dependent local wind model which gives the wind field and vertical dirrusion coefficient. The second stage is advection/diffusion model which uses the results of the first stage as input data. First, wind fields on Pusan coastal area for none synoptic scale wind showed typical land and sea breeze circulation, and convergence zone occured at 1200LST in northern of domain, in succession, moved northward of domain. Emissions from Sinpyeong industrial district were trasnported toward the inland by sea breeze during daytime, and reached the end part of domain about 1800LST. During nighttime, emissions return to sea by land breeze and vertical diffusion also contributes to upward transport. In order to use this model for forecast of air pollution concentration on the Pusan coastal area, it is necessary that computed value must be compared with measured value and wind fields model must also be dealt in detail.

  • PDF

A Study on the Analysis and the Improvement of Land and Sea Breeze Model Experiment suggested to 2009 Revised Elementary Science Curriculum (2009 개정 교육과정 초등과학에서 제시된 해륙풍 모형실험 분석 및 개선 방안)

  • Kang, Houn Tae;Lee, Gyuho;Noh, Suk Goo
    • Journal of Korean Elementary Science Education
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • The purpose of this study is to analyze the problems of land and sea breeze model experiment that has presented in $5^{th}$ grade curriculum in chapter "Weather and our lives" and makes better model simulation so that learners can have better and more effective way to study it. To survey the opinions from dedicated teachers about land and sea breeze model experiment, we produced the survey through interview with science exclusive teacher from M elementary school. An elementary science education expert, 3 men of science EdD modified and complemented survey and started Delphi survey to 12 science teachers who have career teaching more than 3 years. The problems found in this survey were 'one heat bulb, short heating time, small temperature difference of water and sand, lack of class time, empty space between sand and water, back of transparent boxes, little amount of scent and the location of the it' etc. But the most of all, it is hard to see the successful result of the experiment. Based on these kinds of investigations, and lots of trial and error, redesigned the new model experiment that has the most similarity to the real one and high probability of success. According to this, it was able to see the smoke forms horizontal movement along the sand and the smoke goes in one circulation cycle. through this experiment, we made a conclusion that although those scientific experiments in textbook were developed through lots of considerations of expert, to consider the aspect of consumer, it needs to reach the educational agreement about simulation experiment so that It can lead to successful experiment and high quality education.

Simulation of Atmospheric Dispersion over the Yosu Area -II. Diurnal Variations by Solar Radiation- (여수지역 대기확산의 수치 모사 -II. 일사에 의한 일변화-)

  • 오현선;김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.225-236
    • /
    • 2000
  • Diurnal variations of wind field and pollutant dispersion over the Yosu area under the insolation conditions of summer and winter were investigated by using the Regional Atmospheric Modeling System (RAMS). Initially, horizontally homogeneous wind field were assumed on the basis of sounding data at the Kwangju upper-air station for days whose morning wind speeds were below 2m/s. In these days, the sea breeze prevailed in summer while the land breeze lasted for a few hours in the morning; the effect of synoptic winds was strong in winter with some inclusion of wind variations owing to the interaction between sea and land. The predicted wind direction at the location of the Yosu weather station captured an important change of the sea-land breeze of the observed one. The predicted wind speed and the air temperature agreed with observed ones in a reasonable range. In the morning, both in summer and winter, winds around the source location were diverged and became weak between the mountainous area to the southeast and the Kwangyang Bay to the north. Winds, however, accelerated while blowing to the east and south and blowing on the mountainous area. Complicated wind fields resulted in high pollutant concentrations at almost all receptors considered. These high concentrations in the morning were even comparable to the ISCST3 calculations with the worst-case and typical meteorological conditions designated by USEPA(1996). On the other hand, in the afternoon, the wind field was rather uniform even in the mountainous area with development of mixing layer and the concentration distributions being close to the Gaussian distributions.

  • PDF

A Study on the Prediction of SO2 Concentration in local Circulation of Mesoscale (중규모 국지순환에서 이산화황의 농도예측에 관한 연구)

  • Lee, Hwa-Woon;Kim, Yoo-Keun;Jang, Eun-Suk
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.277-284
    • /
    • 1996
  • The Characteristics of atmospheric flow and dispersion of air pollutants in the mountainous coastal area were studied using two-dimensional model by the combination of land-sea breezes and transport. The pollutants emitted into the simulated wind field in considering with the mesoscale local circulations. The typical effects of land-sea breezes and tophography of coastal area on the dispersion are discussed in detail, and the model is proved as an useful tool to pridict real time pollutant transport by the results of application studies in Pusan, Korea where the urbanized coastal area with mountainous topography. It was found that sulfur dioxide ($SO_2$) are differently transported and concentrated as going inland by the influence of the sea breeze with topographic changes. Key words : land-sea breezes, sulfur dioxide, dispersion, coastal area.

  • PDF

Sea Breeze Criterion and the Climatological Characteristics of the Short-time Sea Breeze in Gangneung Coastal Area (강릉 연안지역 해풍의 선정기준과 단 시간 해풍의 기후학적 특성)

  • Park, Jae-Hong;Jung, Woo-Sik;Leem, Heon-Ho;Lee, Hwa-Woon
    • Journal of the Korean earth science society
    • /
    • v.23 no.5
    • /
    • pp.436-441
    • /
    • 2002
  • This study is concerned with the sea breeze criterion and climatological characteristics of the short-time sea breeze in the Gangneung coastal area. The sea breeze criteria in this area are listed here. First, the fact of the sea breeze blowing was considered to be a change of wind direction from land to sea and vice versa without terrain effect like easterly wind. Second, the sea breeze of which continuous time 1-hour or 2-hour was selected. Then the climatological characteristics of the short-time sea breeze were analyzed using the meterological data from a 10-year(1988${\sim}$1997) period. The climatological characteristics which were analyzed for the short-time sea breeze consist of the frequency, onset time, wind direction speed and temperature. Finally, this study will be helpful in meteorological application through the climatological characteristics of sea breeze along the east coast as well as Gangneung Airport.

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

Atmospheric Studies Using a Three-Dimensional Eulerian Model in Kyongin Region (3차원 오일러리안 확산모델을 이용한 경인산단권역의 대기거동 해석)

  • Song, Dong-Woong
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.387-396
    • /
    • 2006
  • The numerical modeling and comparison with observations are performed to find out the detailed structure of meteorology and the characteristic of related dispersion phenomena of the non-reactive air pollutant at Kyoungin region, South Korea, where several industrial complex including Siwha, Banwol and Namdong is located. MM5 (Fifth Generation NCAR/Penn State Mesoscale Model), 3-D Land/sea breeze model and 3-D diagnostic meteorological model have been utilized for the meteorological simulation for September, 2002 with each different spatial resolution, while 3-D Eulerian air dispersion model for the air quality study. We can see the simulated wind field shows the very local circulation quitely well compared with in-site observations in shoreline area with complex terrains, at which the circulation of Land/sea breeze has developed and merged with the mountain and valley breeze eventually. Also it is shown in the result of the dispersion model that the diurnal variation and absolute value of daily mean $SO_2$ concentrations have good agreement with observations, even though the instant concentration of $SO_2$ simulated overestimates around 1.5 times rather than that of observation due to neglecting the deposition process and roughly estimated emission rate. This results may indicate that it is important for the air quality study at shoreline region with the complex terrain to implement the high resolution meteorological model which is able to handle with the complicate local circulation.

Preliminary EMC Analysis between the COMS and the GEO Launch Vehicles (통신해양기상위성과 정지궤도 발사체와의 전자파 적합성 해석)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.439-445
    • /
    • 2008
  • In this paper, the preliminary EMC analysis process between the Communication, Ocean and Meteorological Satellite (COMS) and Geostationary Earth Orbit (GEO) launch vehicles in the frequency range [1MHz-47MHz] is described. The considered launch vehicles are arian V, sea Launch, land Launch, atlas III&V, delta IV, proton M/breeze M, soyuz, HII-A and Angara. The launch vehicle Radiated Emission (RE) specifications have been compared to COMS satellite Radiated Susceptibility (RS) limits. The COMS RS limits are the RS qualification levels of COMS units during launch. As a result, The radiated emission levels of arian V, sea launch, atlas III&V, delta IV, proton M/breeze M, HII-A and angara are compliant with COMS RS limits. The negative margins appear between land launch or soyuz launch vehicle RE and COMS RS. Then, if the land launch or soyuz is chosen by the customer, The tests should be performed at satellite level in order to demonstrate the compatibility with respect to launch vehicles specifications.

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation

  • Choi, Hyo
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.19-26
    • /
    • 2003
  • The dispersion of recycled particulates in the complex coastal terrain containing Kangnung city, Korea was investigated using a three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). The results show that particulates at the surface of the city that float to the top of thermal internal boundary layer (TIBL) are then transported along the eastern slope of the mountains with the passage of sea breeze and nearly reach the top of the mountains. Those particulates then disperse eastward at this upper level over the coastal sea and finally spread out over the open sea. Total suspended particulate (TSP) concentration near the surface of Kangnung city is very low. At night, synoptic scale westerly winds intensify due to the combined effect of the synoptic scale wind and land breeze descending the eastern slope of the mountains toward the coast and further seaward. This increase in speed causes development of internal gravity waves and a hydraulic jump up to a height of about 1km above the surface over the city. Particulate matter near the top of the mountains also descends the eastern slope of the mountains during the day, reaching the central city area and merges near the surface inside the nocturnal surface inversion layer (NSIL) with a maximum ground level concentration of TSP occurring at 0300 LST. Some particulates were dispersed following the propagation area of internal gravity waves and others in the NSIL are transported eastward to the coastal sea surface, aided by the land breeze. The following morning, particulates dispersed over the coastal sea from the previous night, tend to return to the coastal city of Kangnung with the sea breeze, developing a recycling process and combine with emitted surface particulates during the morning. These processes result in much higher TSP concentration. In the late morning, those particulates float to the top of the TIBL by the intrusion of the sea breeze and the ground level TSP concentration in the city subsequently decreases.

  • PDF