• Title/Summary/Keyword: Land Cover Change

Search Result 456, Processing Time 0.03 seconds

Monitoring of Agriculture land in Egypt using NOAA-AVHRR and SPOT Vegetation data

  • Shalaby, A.;Ghar, M. Aboel;Tateishi, R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.18-20
    • /
    • 2003
  • Land cover change detection is one of the most important trends in which remote sensing data could be used to assist strategists and the planners to decide the best land use policy. Two images of NOAA-AVHRR and SPOT vegetation acquired in November 1992 and 2002 were used to assess the changes of Agricultural lands in Egypt. A supervised classification together with two change images derived from classification result and NDVI were used to evaluate the trend and form of the change. It was found that agricultural areas increased by about 14.3 % during the study period in particular around the River Nile Delta and near the Northern Lakes of Egypt. The new cultivated lands were extracted mainly from the desert and from the salt marches areas. At the same time, parts of the agricultural lands were turned into non-cultivated land because of the urban expansion and soil degradation.

  • PDF

Analysis of Hydrological Impact by Typhoon RUSA using Landsat Images and Hydrological Model (Landsat영상과 수문모형을 이용한 태풍 RUSA에 의한 수문영향 분석)

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.391-399
    • /
    • 2005
  • The purpose of this study is to evaluate hydrological impact by the land cover change of typhoon damage. For the typhoon RUSA (rainfall 1,402 mm) occurred in 2002 (August $31\;{\sim}$ September 1), satellite images of Landsat 7 ETM+ of September 29, 2000 and Landsat 5 TM of September 11, 2002 were selected, and each land cover was classified for Namdae-cheon watershed $192.7km^2$ located in the middle-eastern part of Korea Peninsula. SCS unit hydrograph for watershed runoff and Muskingum for streamflow routing of WMS HEC-1 was adopted. 30m resolution DEM & hydrological soil group using 1:50,000 soil map were prepared. The model was calibrated using three available data of storm events of 1985 to 1988 based on 1985 land cover condition. To predict the streamflow change by damaged land cover condition, rainfall of 50 years to 500 years frequency were generated using 2nd quantile of Huff method. The damaged land cover condition treated as bare soil surface increased streamflow of $50.1\;m^3/sec$ for 50 years rainfall frequency and $67.6\;m^3/sec$ for 500 years rainfall frequency based on AMC-I condition. There may be some speedy treatment by the government for the next coming typhoon damage.

NDVI RESPONSES TO THE FOREST CANOPY AND FLOOR IN EASTERN SIBERIA

  • Suzuki, Rikie;Kobayashi, Hideki;Delbart, Nicolas;Hiyama, Tetsuya;Asanuma, Jun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.325-328
    • /
    • 2007
  • We discuss the Normalized Difference Vegetation Index (NDVI) of the forest canopy and floor separately based on airborne spectral reflectance measurements and simultaneous airborne land surface images acquired around Yakutsk, Siberia in 2000. The aerial land surface images were visually classified into four forest types: no-green canopy and snow floor (Type-1), green canopy and snow floor (Type-2), no-green canopy and no-snow floor (Type-3), and green canopy and no-snow floor (Type-4). The mean NDVI was calculated for these four types. Although Type-2 had green canopy, the NDVI was rather small (0.17) because of high reflection from the snow cover on the floor. Type-3, which had no green canopy, indicated considerably large NDVI (0.45) due to the greenness of the floor. Type-4 had the largest NDVI (0.75) because of the greenness of both the canopy and floor. These results reveal that the NDVI depends considerably on forest floor greenness and snow cover in addition to canopy greenness.

  • PDF

A Study on Microclimate Change Via Time Series Analysis of Satellite Images -Centered on Dalseo District, Daegu City- (위성영상의 시계열 분석을 통한 미기후변화 분석 -대구시 달서구를 대상으로-)

  • Baek, Sang-Hun;Jung, Eung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.2
    • /
    • pp.34-43
    • /
    • 2009
  • Based on previous research on ways of reducing an urban heat island phenomenon via an introduction of wind corridors, I conducted this study to see what influence a change in land cover arising of or going through urbanization has on wind corridors of urban space. As a target place, I chose Daegu city where is a representative extreme heat place in Korea and has been also largely expanded in size by incorporating its neighboring areas since the 1980s, expecially Dalseo District whose surface temperature gap is large. The population of Dalseo District has been sharply increased since its creation as a new administrative district in 1988. I studied on the urban microclimate change for a 20-year period by using satellite images on summer months in 1987, 1997 and 2007 in time frames. The finding of this study found that a reduction of natural land cover and an increase of artificial land cover serves as a disadvantageous factor for cold air creation and flowing and strikingly lowers the amount and height of cold air in the downtown area. It seemed that the cold air creation and flowing functions are influenced by land cover. In order to steadily create cold air and secure its flowing, it is thought that urban development or urban regeneration should be implemented by analysing the characteristics of the space surrounding the city. By doing so, a pleasant and healthy city could be formed.

  • PDF

A Study on the Land-Use Changes on the Balan Water sheds Using the Multi-temperature Landsat TM Images (다시기 Landsat TM 영상을 이용한 소유역의 토지이용변화분석)

  • 강문성;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.473-478
    • /
    • 1999
  • The purpose of the study were to detect and evaluate the land use and changes on the Balan Watersheds, located southwest of Suwon, using the Thematic Mapper(TM) data. Three sests of TM taken in 1985 , 1993 and 1996 were used and the changes in the land use analyzed and compared. The suupervised and unsuperivised classification methods were adoppted to classify five land-cover categories ; Paddy , upland , forest , residential , and water. Future ladn use patterns were simulated using a Markow chain method, and the change ratios presented.

  • PDF

Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms (다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석)

  • LEE, Jung-Hee;IM, Jung-Ho;KIM, Kyoung-Min;HEO, Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.81-99
    • /
    • 2015
  • The acceleration of global warming has required better understanding of carbon cycles over local and regional areas such as the Korean peninsula. Since forests serve as a carbon sink, which stores a large amount of terrestrial carbon, there has been a demand to accurately estimate such forest carbon sequestration. In Korea, the National Forest Inventory(NFI) has been used to estimate the forest carbon stocks based on the amount of growing stocks per hectare measured at sampled location. However, as such data are based on point(i.e., plot) measurements, it is difficult to identify spatial distribution of forest carbon stocks. This study focuses on urban areas, which have limited number of NFI samples and have shown rapid land cover change, to estimate grid-based forest carbon stocks based on UNFCCC Approach 3 and Tier 3. Land cover change and forest carbon stocks were estimated using Landsat 5 TM data acquired in 1991, 1992, 2010, and 2011, high resolution airborne images, and the 3rd, 5th~6th NFI data. Machine learning techniques(i.e., random forest and support vector machines/regression) were used for land cover change classification and forest carbon stock estimation. Forest carbon stocks were estimated using reflectance, band ratios, vegetation indices, and topographical indices. Results showed that 33.23tonC/ha of carbon was sequestrated on the unchanged forest areas between 1991 and 2010, while 36.83 tonC/ha of carbon was sequestrated on the areas changed from other land-use types to forests. A total of 7.35 tonC/ha of carbon was released on the areas changed from forests to other land-use types. This study was a good chance to understand the quantitative forest carbon stock change according to the land cover change. Moreover the result of this study can contribute to the effective forest management.

Analysis of Fragmentation and Heterogeneity of Tancheon Watershed by Land Development Projects (개발에 따른 탄천유역의 파편화 및 이질성분석)

  • Lee, Dong-Kun;Yi, Hyun-Yi;Kim, Eun-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.6
    • /
    • pp.120-129
    • /
    • 2007
  • Rapid urbanization has transformed the spatial pattern of urban land use or cover. This paper concentrates that changed characteristics of landscape structure in the Tancheon Watershed, from 1995 to 2003 were investigated using land cover map. We used FRAGSTATS software to calculate landscape indices to characterize the landscape structure. We found that built up area has been increased rapidly during the study period, while cultivated area and forest area have been decreased rapidly in the same period. From 1995 to 2003, built up area was increased from 19.73% to 39.62% and cultivated area and forest area was decreased 17.60% to 5.97% and 58.31% to 49.41%. Number of patches, mean euclidean nearest-neighbor distance, contagion index, Shannon's diversity index increased considerably from 1995 to 2003, also suggesting the landscape in the study area became more fragmented and heterogeneous. but because of continuously fragmentation, landscape became homogeneity. The study demonstrates that landscape metrics can be a useful indicator in landscape monitoring and landscape assessment.

Assessment of Hydrological Impact by Long-Term Land Cover Changes due to Urbanization of Rural Area (농촌유역의 도시화 진전에 따른 수문환경 변화)

  • Lee, Mi-Seon;Park, Geun-Ae;Kwon, Hyung-Joong;Kim, Seong-Joon
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.1 s.26
    • /
    • pp.17-24
    • /
    • 2005
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover change by gradual urbanization of Anseong-cheon Gongdo watershed ($371.8km^2$). Land covers of 1981, 1990, 2000 Landsat TM images were classified by maximum likelihood method. The watershed showed a trend that forest & paddy areas decreased about $33km^2$ and $27km^2$, respectively and urban area increased about $11km^2$ during the periods. To identify the impact of streamflow due to urbanization, WMS HEC-1 was used. According to apply Huffs quartile storm events by changing land cover data, peak runoff discharge of each frequency rainfall (50, 100, 500 years) increased about 56, 36, $192m^3/sec$, respectively.

Land Use Characteristics in the Kyungan Watershed by Analyzing Long-Term Land Cover Data (장기적 토지피복 분석을 통한 경안천 유역의 토지이용 특성)

  • Han, Mideok;Kim, Jichan;Chung, Wookjin
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • The use of land cover was sharply changed during 1975~2007 in the Kyungan watershed $(561.12 km^2)$. The changes occurred over an area of more than $227.65 km^2$ during the overall period at changing rates of 1.04% per year for water area, 1.79% per year for residential area, 2.99% per year for bare area, 3.03% per year for wetland area, 3.04% per year for grass area, 0.87% per year for forest and 2.32% per year for agriculture area. Water, residential, bare and wetland areas increased, while grass, forest and agriculture areas decreased during the last 32 years. BOD concentrations of representative sites for each sub-watershed continuously increased until the early 2000s as residential area increased with the highest discharged load, but decreased after the mid 2000s except upper Kyungan watershed. Such decline appears to be associated with the planning of Total Maximum Daily Load management for Gwangju city and expansion of waste water treatment plant. It is necessary to control land use/cover changes of the upper watershed and to prepare appropriate watershed management system for improvement in river environment including water quality, stream flow and bio-diversity.

Estimation of Regional Future Agricultural Water Demand in Jeju Island Considering Land Use Change (토지이용 변화를 고려한 제주도 권역별 미래 농업용수 수요량 추정)

  • Song, Sung-Ho;Myoung, Woo-Ho;An, Jung-Gi;Jang, Jung-Seok;Baek, Jin-Hee;Jung, Cha-Youn
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.92-105
    • /
    • 2018
  • In this study, the projected land use area in 2030 for major crop production was estimated in Jeju Island using land cover map, and corresponding agricultural water demand for 40 sub-regions was quantitatively assessed using the future climate change scenario (RCP 4.5). Estimated basic unit of water demand in 2030 was the highest in the western region, and the lowest in the eastern region. Monthly maximum agricultural water demand analysis revealed that water demand in August of 2030 substantially increased, suggesting the climate of Jeju Island is changing to a subtropical climate in 2030. Agricultural water demand for sub-region in 2030 was calculated by multiplying the target area of the water supply excluding the area not in use in winter season by the basic unit of water demand, and the maximum and minimum values were estimated to be $306,626m^3/day$ at Seogwipo downtown region and $77,967m^3/day$ at Hallim region, respectively. Consequently, total agricultural water demand in Jeju Island in 2030 was estimated to be $1,848,010m^3/day$.