• 제목/요약/키워드: Laminated plates

검색결과 478건 처리시간 0.025초

전단변형을 고려한 이방성 적층판의 좌굴해석 (Buckling Analysis of Anisotropic Laminated Plates with Shear Deformation)

  • 최용희;권택진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.361-368
    • /
    • 2001
  • This paper deals with the buckling load of antisymmetric angle-ply and cross-ply laminated rectangular plates. Buckling analysis is preformed for a simply supported, shear deformable laminated plate subjected to uniaxial compression and biaxial compression combined with uniform lateral pression. The shear deformation theory is considered to figure out a more exact behavior of laminated plates exactly. The purposes of this study are to formulate anisotropic laminated plates with shear deformation and to investigate the buckling load according to the various variables of laminated plates by using the exact solutions for anisotropic laminated plates having simply supported boundary.

  • PDF

비등방성 적층 캔틸레버 박판 및 후판의 해석연구 (Study on the Analysis of Anisotropic Laminated Cantilever Thin Plates and Anisotropic Laminated Cantilever Thick Plates)

  • 박원태
    • 복합신소재구조학회 논문집
    • /
    • 제1권4호
    • /
    • pp.1-5
    • /
    • 2010
  • In this study, it is presented analysis results of bending problems in the anisotropic cantilever thick plates and the anisotropic laminated cantilever thin plates bending problems. Finite element method in this analysis was used. Both Kirchoff's assumptions and Mindlin assumptions are used as the basic governing equations of bending problems in the anisotropic laminated plates. The analysis results are compared between the anisotropic laminated cantilever thick plates and the anisotropic laminated cantilever thin plates for the variations of thickness-width ratios.

  • PDF

다적층 복합면재를 갖는 비등방성 샌드위치판의 휨해석 (Bending Analysis of Anisotropic Sandwich Plates with Multi-layered Laminated Composite faces)

  • 지효선
    • 복합신소재구조학회 논문집
    • /
    • 제3권4호
    • /
    • pp.17-26
    • /
    • 2012
  • This study presents a governing equations of bending behavior of anisotropic sandwich plates with multi-layered laminated composite faces. Based on zig-zag models for through thickness deformations, the shear deformation of composite faces is included. All edges of plate are assumed to be simply supported. Results of the bending analysis under lateral loads are presented for the influence of various lay up sequences of antisymmetric angle-ply laminated faces. The accuracy of the approach is ascertained by comparing solutions from the sandwich plates theory with composite faces to the laminated plates theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated faces, the proposed method showed higher than that calculated according to the general laminated plates theory. The information presented might be useful to design sandwich plates structure with polymer matrix composite faces.

Frequency optimization for laminated composite plates using extended layerwise approach

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • 제12권6호
    • /
    • pp.541-548
    • /
    • 2012
  • This paper deals with the applicability of extended layerwise optimization method (ELOM) for frequency optimization of laminated composite plates. The design objective is the maximization of the fundamental frequency of the laminated plates. The fibre orientations in the layers are considered as design variables. The first order shear deformation theory (FSDT) is used for the finite element solution of the laminates. Finally, the numerical analysis is carried out to show the applicability of extended layerwise optimization algorithm of laminated plates for different parameters such as plate aspect ratios and boundary conditions.

최적 제어를 통한 복합적층판의 형상최적화 (Shape Optimization in Laminated Composite Plates by Volume Control)

  • 한석영;백춘호;박재용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.277-282
    • /
    • 2003
  • The growth-strain method was applied to cutout optimization in laminated composite plates. Since the growth-strain method optimizes a shape by generating the bulk strain to make the distributed parameter uniform, the distributed parameter was chosen as Tsai-Hill value. In this study, of particular interest is to see whether the growth-strain method developed for shape optimization in isotropic media would work for laminated composite Plates. In volume control of the growth-strain method, it makes Tsai-Hill value at each element uniform in laminated composite plates under the predetermined volume. The shapes optimized by Tsai-Hill fracture index were compared with those of the initial shapes for the various load conditions and predetermined volumes of laminated composite plates. As a result, it was verified that volume control of the growth-strain method worked very well for cutout optimization in laminated composite plates.

  • PDF

Dynamic stability analysis of laminated composite plates in thermal environments

  • Chen, Chun-Sheng;Tsai, Ting-Chiang;Chen, Wei-Ren;Wei, Ching-Long
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.57-79
    • /
    • 2013
  • This paper studies the dynamic instability of laminated composite plates under thermal and arbitrary in-plane periodic loads using first-order shear deformation plate theory. The governing partial differential equations of motion are established by a perturbation technique. Then, the Galerkin method is applied to reduce the partial differential equations to ordinary differential equations. Based on Bolotin's method, the system equations of Mathieu-type are formulated and used to determine dynamic instability regions of laminated plates in the thermal environment. The effects of temperature, layer number, modulus ratio and load parameters on the dynamic instability of laminated plates are investigated. The results reveal that static and dynamic load, layer number, modulus ratio and uniform temperature rise have a significant influence on the thermal dynamic behavior of laminated plates.

Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions

  • Belkacem, Adim;Tahar, Hassaine Daouadji;Abderrezak, Rabahi;Amine, Benhenni Mohamed;Mohamed, Zidour;Boussad, Abbes
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.761-769
    • /
    • 2018
  • In this paper, we study the Carbon/Glass hybrid laminated composite plates, where the buckling behavior is examined using an accurate and simple refined higher order shear deformation theory. This theory takes account the shear effect, where shear deformation and shear stresses will be considered in determination of critical buckling load under different boundary conditions. The most interesting feature of this new kind of hybrid laminated composite plates is that the possibility of varying components percentages, which allows us for a variety of plates with different materials combinations in order to overcome the most difficult obstacles faced in traditional laminated composite plates like (cost and strength). Numerical results of the present study are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories issue from the literature. It can be concluded that the proposed theory is accurate and simple in solving the buckling behavior of hybrid laminated composite plates and allows to industrials the possibility to adjust the component of this new kind of plates in the most efficient way (reducing time and cost) according to their specific needs.

Shear buckling analysis of cross-ply laminated plates resting on Pasternak foundation

  • Topal, Umut;Nazarimofrad, Ebrahim;Kholerdi, Seyed Ebrahim Sadat
    • Structural Engineering and Mechanics
    • /
    • 제68권3호
    • /
    • pp.369-375
    • /
    • 2018
  • This paper presents the shear buckling analysis of symmetrically laminated cross-ply plates resting on Pasternak foundation under pure in-plane uniform shear load. The classical laminated plate theory is used for the shear buckling analysis of laminated plates. The Rayleigh-Ritz method with novel plate shape functions is proposed to solve the differential equations and a computer programming is developed to obtain the shear buckling loads. Finally, the effects of the plate aspect ratios, boundary conditions, rotational restraint stiffness, translational restraint stiffness, thickness ratios, modulus ratios and foundation parameters on the shear buckling of the laminated plates are investigated.

최대 열적 좌굴하중을 갖는 두꺼운 복합재료 적층판의 설계 (Design of Thick Laminated Composite Plates for Maximum Thermal Buckling Load)

  • 이영신;이열화;양명석;박복선
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1761-1771
    • /
    • 1993
  • In this paper, the design of thick laminated composite plate subjected to thermal buckling load under uniform temperature distribution is presented. In the design procedures of composite laminated plates for maximum thermal buckling load. the finite element method based on shear deformed theory is used for the analysis or laminated plates. One-demensional search method is used to find optimal fiber orientation and, in the next step, optimal thickness is investigated. Design variables such as fiber orientation and ply thicknesses coefficient of plates are adopted. The optimal design for the symmetric or antisymmetric laminated plates consisted of 4 layers with maximum thermal buckling load is performed.

Buckling and vibration of symmetric laminated composite plates with edges elastically restrained

  • Ashour, Ahmed S.
    • Steel and Composite Structures
    • /
    • 제3권6호
    • /
    • pp.439-450
    • /
    • 2003
  • The finite strip transition matrix technique, a semi analytical method, is employed to obtain the buckling loads and the natural frequencies of symmetric cross-ply laminated composite plates with edges elastically restrained against both translation and rotation. To illustrate the accuracy and the validation of the method several example of cross play laminated composite plates were analyzed. The buckling loads and the frequency parameters are presented and compared with available results in the literature. The convergence study and the excellent agreement with known results show the reliability of the purposed technique.