• 제목/요약/키워드: Laminated composite plates

검색결과 395건 처리시간 0.024초

Failure analysis of composite plates under static and dynamic loading

  • Ray, Chaitali;Majumder, Somnath
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.137-147
    • /
    • 2014
  • The present paper deals with the first ply failure analysis of the laminated composite plates under various static and dynamic loading conditions. Static analysis has been carried out under patch load and triangular load. The dynamic failure analysis has been carried out under triangular pulse load. The formulation has been carried out using the finite element method and a computer code has been developed. The first order shear deformation theory has been applied in the present formulation. The displacement time history analysis of laminated composite plate has been carried out and the results are compared with those published in literature to validate the formulation. The first ply failure load for laminated composite plates with various lamination schemes under static and dynamic loading conditions has been calculated using various failure criteria. The failure index-time history analysis has also been carried out and presented in this paper.

퍼지 이론을 이용한 복합재 적층판의 최적설계 (Optimization of Composite Laminated Plate Using Fuzzy Set Theory)

  • 홍영기;이종호;구만회;우호길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.63-67
    • /
    • 1999
  • This paper presents the optimization of CFRP laminated rectangular plates using fuzzy theory. In optimization, thickness of CFRP lamina and fiber angle are taken as design variables, and total thickness of the plates is minimized under Tsai-Hill failure criterion. The uncertainties are entered by introducing fuzzy material strengths and then the objective and constraints are represented by a membership function of their own according to the intersection method. Various design results are presented for the CFRP laminated composites plates.

  • PDF

RM 등기하 판요소를 이용한 적층판의 자유진동 및 선형좌굴 해석 (Vibration and Buckling Analysis of Laminated Composite Plates using RM Isogeometric General Plate Element)

  • 김하룡;이상진
    • 한국공간구조학회논문집
    • /
    • 제14권2호
    • /
    • pp.59-68
    • /
    • 2014
  • A study on the vibration and buckling analyses of laminated composite plates is described in this paper. In order to carry out the analyses of laminated composite plates, a NURBS-based isogeometric general plate element based on Reissner-Mindlin (RM) theory is developed. The non-uniform rational B-spline (NURBS) is used to represent the geometry of plate and the unknown displacement field and therefore, all terms required in this element formulation are consistently derived by using NURBS basis function. Numerical examples are conducted to investigate the accuracy and reliability of the present plate element. From numerical results, the present plate element can produce the isogeometric solutions with sufficient accuracy. Finally, the present isogeometric solutions are provided as future reference solutions.

Size-dependent vibration analysis of laminated composite plates

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.337-349
    • /
    • 2019
  • The size-dependent vibration analysis of a cross-/angle-ply laminated composite plate when embedded on the Pasternak elastic foundation and exposed to an in-plane magnetic field are investigated by adopting an analytical eigenvalue approach. The formulation, which is based on refined-hyperbolic-shear-deformation-plate theory in conjunction with the Eringen Nonlocal Differential Model (ENDM), is tested against considering problems for which numerical/analytical solutions available in the literature. The findings of this study demonstrated the role of magnetic field, size effect, elastic foundation coefficients, geometry, moduli ratio, lay-up numbers and fiber orientations on the nonlocal frequency of cross-/angle-ply laminated composite plates.

A refined theory with stretching effect for the flexure analysis of laminated composite plates

  • Draiche, Kada;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • 제11권5호
    • /
    • pp.671-690
    • /
    • 2016
  • This work presents a static flexure analysis of laminated composite plates by utilizing a higher order shear deformation theory in which the stretching effect is incorporated. The axial displacement field utilizes sinusoidal function in terms of thickness coordinate to consider the transverse shear deformation influence. The cosine function in thickness coordinate is employed in transverse displacement to introduce the influence of transverse normal strain. The highlight of the present method is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\neq}0$), the displacement field is constructed with only 5 unknowns, as against 6 or more in other higher order shear and normal deformation theory. Governing equations of the present theory are determined by employing the principle of virtual work. The closed-form solutions of simply supported cross-ply and angle-ply laminated composite plates have been obtained using Navier solution. The numerical results of present method are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy, higher order shear and normal deformation theory (HSNDT) and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory. It can be concluded that the proposed method is accurate and simple in solving the static bending response of laminated composite plates.

FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory

  • Bhaskar, Dhiraj P.;Thakur, Ajaykumar G.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.409-426
    • /
    • 2019
  • The aim of the present work is to study the nonlinear behavior of the laminated composite plates under transverse sinusoidal loading using a new inverse trigonometric shear deformation theory, where geometric nonlinearity in the Von-Karman sense is taken into account. In the present theory, in-plane displacements use an inverse trigonometric shape function to account the effect of transverse shear deformation. The theory satisfies the traction free boundary conditions and violates the need of shear correction factor. The governing equations of equilibrium and boundary conditions associated with present theory are obtained by using the principle of minimum potential energy. These governing equations are solved by eight nodded serendipity element having five degree of freedom per node. A square laminated composite plate is considered for the geometrically linear and nonlinear formulation. The numerical results are obtained for central deflections, in-plane stresses and transverse shear stresses. Finite element Codes are developed using MATLAB. The present results are compared with previously published results. It is concluded that the geometrically linear and nonlinear response of laminated composite plates predicted by using the present inverse trigonometric shape function is in excellent agreement with previously published results.

임의방향 보강재를 가지는 복합적층 보강판의 해석 (Analysis of Laminated Composite Stiffened Plates with arbitrary orientation stiffener)

  • 임성순;장석윤;박대용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.147-158
    • /
    • 2004
  • 많은 장점을 가진 복합재료를 사용한 보강판에 대하여 지금까지 많은 연구자들이 변위법에 근거한 등매개변수 평판 요소와 보요소를 결합한 유한요소법을 사용하여왔다. 이러한 유한요소법은 보요소를 평판 요소의 절점에 대한 강성으로 치환하기 때문에 보강재에 대한 국부적인 거동을 파악할 수 없으며 복합적층 구조인 경우 그 적용성이 제한적이다. 따라서, 본 연구에서는 복합재료 보강판의 해석에 있어 보강재 및 판에 대하여 3차원 쉘요소를 사용하여 거동을 분석하고자 한다. 본 연구에서는 Reissner-Mindlin의 1차 전단변형이론을 사용하였다. 그러나 Reissner-Mindlin이론에 의한 등매개변수 평판 휨 요소는 판의 두께가 얇아지는 경우 일반적으로 전단잠김현상과 가상의 제로에너지 모드가 발생하는데 이를 제거하기 위해 대체전단변형률장을 사용하였다. 폭-두께비, 형상비 뿐만아니라 경사판의 경사각 변화에 따른 임의방향 보강재를 갖는 단순지지된 복합적층 구형 및 경사판에 대한 처짐분포를 비교 분석하였다.

폐단면리브로 보강된 일축압축을 받는 복합적층판의 국부좌굴강도 증가효과 (Increasing Effect in Local Buckling Strength of Laminated Composite Plates Stiffened with Closed-section Ribs under Uniaxial Compression)

  • 황수희;김유식;최병호
    • 복합신소재구조학회 논문집
    • /
    • 제4권2호
    • /
    • pp.39-44
    • /
    • 2013
  • This study is aimed to examine the influence of the rotational stiffness of U-shaped ribs on the local buckling behaviors of laminated composite plates. Applying the orthotropic plates with eight layers of the layup $[(0^{\circ})4]s$ and $[(0^{\circ}/90^{\circ})2]s$, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. There is a need to develope a simple design equation to establish the rotational stiffness effect, which could be easily quantified by comparing the theoretical critical stress equation for laminated composite plates with elastic restraints based on the Classical laminated plate theory. Through the parametric numerical studies, it is confirmed that there should clearly exist an increasing effect of local plate buckling strength due to the rotational stiffness by closed-section ribs. An applicable coefficient for practical design should be verified and proposed for future study. This study will contribute to the future study for establishing an increasing coefficient for the design strength and optimum design of U-rib stiffened plates.

저속 충격을 받는 적층판의 충격거동과 손상에 관한 연구 (A Study on the Impact Behavior and Damage of Laminated Composite Plates Subjected to the Low-Velocity Impact)

  • 안국찬;김규수;박승범;황병선
    • 한국안전학회지
    • /
    • 제17권1호
    • /
    • pp.6-10
    • /
    • 2002
  • This paper presents the impact behavior and damage of laminated composite plates subjected to low-velocity impact. For this purpose, a pendulum impact test for impact behavior and C-scan for impact damage are done. Test materials are carbon/epoxy laminated composite plates and stacking sequences $[0/90_4\;[0/45_2/-45]_s,\;[0/45/-45/90]_s$ and [0/26/51/77/-77/-51/-26/0].

홀로그래피 간섭계를 이용한 복합적층판의 결함측정 (Nondestructive Inspection Method of Composite Laminated Plates by Holographic Interferometry)

  • 김석중;김재형;박현철
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3202-3218
    • /
    • 1994
  • Mode shapes and natural frequencies of vibrating laminated composite plates are taken using real-time and time-average holographic interferometry. Debonds and delamination in the laminated plates are measured nondestructively. During holographic testing of composite plates, it has been found that the conditions for the local resonance in debonds are strongly dependent on the frequency of excitation. A membrane resonance model was proposed to describe this behavior. Relations between characteristic length according to the size, shape of debonds and membrane resonance frequency are presented. Several experiments were performed to verify the membrane resonance model. The agreements between the predicted excitation frequency and the observed resonance frequency are good. The experimental results show that higher stresses and strains due to local resonance lead to the debond detection.