본 논문에서는 사전등화를 이용하는 상향링크 MC-CDMA(multicarrier-code division multiple access)/TDD(time division duplexing) 시스템에서 사전등화를 위한 상향링크 채널을 추정하는 방법들을 제안하고 시스템의 성능분석을 수행한다. 제안된 방법들에서는 하향링크 슬롯구간에서의 채널변화를 적절한 차수의 다항식으로 모델링하고, 이 다항식을 상향링크 슬롯구간으로 확장함으로써 상향링크 슬롯구간의 채널을 추정한다. 하향링크 슬롯구간에서의 채널변화는 MMSE(minimum mean squared error)curve fitting 방법이나 Lagrange 보간법 등이 사용되며 1차, 2차, 3차 다항식으로 근사화 된다. 성능지표로 정확도보다 시스템 성능이 중요 하므로 BER (bit error rate)을 사용한다. 다양한 시스템 및 채널환경에서의 모의실험 결과로부터 Lagrange 보간법은 하향링크 채널정보가 정확한 경우에는 MMSE 방법보다 성능이 다소 우수하지만 하향링크 채널추정 오류에 매우 민감하며, 2 차 다항식을 사용한 MMSE curve fitting 방법은 다양한 환경에서 우수한 성능을 가질 뿐만 아니라 채널추정 오류에도 매우 강인함을 알 수 있다.
본 논문에서는 Galois 스윗칭함수를 구하기 위해서 임의의 유한체상에서 정의되는 Galois 체의 성질을 설명하였고, 임의의 유한체상에서의 연산방법을 밝혔다. 고리고 Lagrange 보간법에 의한 다항식이 유한체상에서 전개될 수 있음을 증명하였다 이 결과를 적용하여 단일변수를 갖는 Galois스윗칭 함수를 유도하고 다치논리회로를 실현하였다.
Among the various forms of interpolating polynomial for approximation, this paper is a study about the characteristics of piecewise Lagrange interpolating polynomials. And throughout the study, an attempt is made to construct the two-dimensional ap proximating function over Rectangular Grid and Triangular Grid by using the one-dim ensional interpolating polynomials.
This paper presents a new method for finding the Block Pulse series coefficients and deriving the Block Pulse integration operational matrices which are necessary for the control fields using the Block Pulse functions. In this paper, the accuracy of the Block Pulse series coefficients derived by using the Lagrange second order interpolation polynomial is approved by the mathematical method.
This paper presents a new method for estimating the block pulse series coefficients by using the Lagrange's second order interpolation polynomial. Block pulse functions have been used in a variety of fields such as the analysis and controller design of the systems. When the block pulse functions are used, it is necessary to find the more exact value of the block pulse series coefficients. But these coefficients have been estimated by the mean of the adjacent discrete values, and the result is not sufficient when the values are changing extremely. In this paper, the method for improving the accuracy of the block pulse series coefficients by using the Lagrange's second order interpolation polynomial is presented.
보간 필터는 샘플링된 데이터의 사이 값을 추정하는 회로로서 시간 복원 시스템에 널리 사용된다. 다항식 보간은 주어진 점의 정보를 가지고 각 다항식의 계수를 계산하여 추정하는 위치의 값을 계산하는 것이다. 본 논문에서는 Lagrange 3차 보간 방정식에서 주어진 계수를 제안한 ${\delta}$함수로 변환하는 보조 필터를 이용하여 보간 성능을 개선시키는 방법을 제안한다. 예제를 이용하여 제안한 구조와 기존 보간 회로 구조와 비교하였을 때 효율적임을 입증한다.
This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives the related integration operational matrices and generalized integration operational matrix by using the Lagrange second order interpolation polynomial.
비밀공유 기법은 개인키와 같은 비밀을 복수의 지분으로 분할하여 분산 관리함으로써 비밀의 보안성을 높이는 기술이다. 그동안 다양한 상황에서 비밀공유를 적용하기 위한 많은 연구가 있어 왔으며, Tassa가 제안한 논리곱 기반의 비밀공유 방법은 도함수를 사용하여 계층적 비밀공유를 가능하게 하는 방법이다. 하지만 도함수를 사용하는 계층적 비밀공유는 몇 가지 한계를 가진다. 첫째, 각 레벨의 지분들이 하나의 도함수로부터 생성되기 때문에 하나의 레벨에 하나의 참여자 그룹만을 만들 수 있다. 둘째, 논리곱에 기반한 비밀 복원만 가능하여 임의의 비밀 복원 조건을 규정할 수 없다. 셋째, 도함수를 사용하기 때문에 버크호프 보간법을 필요로 하며, 이는 다항식 기반 비밀공유에 사용되는 라그랑주 보간법에 비해 구현이 복잡하고 어렵다. 본 논문에서는 논리곱 기반 계층적 비밀공유를 일반화시킨 다중 컴파트먼트 비밀공유 기법을 제안한다. 제안하는 기법은 비밀을 복원하는데 필요한 외부지분들을 이용하여 비밀을 암호화하고, 암호화된 비밀 값이 삽입된 다항식을 생성하여 내부지분들을 생성한다. 내부지분들로 다항식을 복원할 수는 있지만, 이 때 얻을 수 있는 값은 암호화된 비밀 값이며 복호화를 위해서는 외부지분들이 필요하다. 이 기법을 적용하면 하나의 계층에 복수의 참여자 그룹을 만들 수 있으며, 논리곱은 물론 임의의 비밀 복원 조건을 구현할 수 있다. 또한 다항식을 사용함에 따라 라그랑주 보간법을 적용하는 것도 가능해진다.
공학문제 해결을 위한 수치적 프로그램에서 원하는 해와 그 해의 변이 값에 대하여 같은 수준의 오차를 유지할 수 있는 기존의 복합유한 요소방법을 소개하고 이에 대한 효과적인 프로그램 재사용을 이용한 Matrix 생성기법을 소개한다. 또한, 원하는 임의의 차수의 기저에 대한 Matrix의 자동 생성기법을 제안한다. 여기서, 자동 생성된 Matrix는 최소한의 nonzero element를 갖고, 이는 Inverse Matriix 형성에 있어서 최소오차와 효율성을 보장한다. 위에서 제안한 MatriBt 생성기법을 최소표면적 문제에 적용하여 본다.
Eulerian-Lagrangian 방법을 이용하여 1차원 종확산방정식의 수치모형을 비교·분석하였다. 본 연구에서서 비교·분석한 모형은 지배방정식을 연산자 분리방법에 의해서 이송만을 지배하는 이송방정식과 확산만을 지배하는 확산방정식으로 분리한다. 이송방정식은 특성곡선을 따라서 유체입자를 추적하는 특성곡선법을 사용하여 해를 구하고, 그 결과를 고정된 Eulerian 격자상에 보간하였고, 확산방정식은 상기 고정격자상에서 Crank-Nicholson 유한차분법을 사용하여 해를 구하였다. 이송방정식의 풀이에서 다양한 보간방법이 적용되었는데, 일반적으로 Hermite 보간다항식을 사용한 경우가 Lagrange 보간다항식을 사용한 경우보다 수치확산 및 수치진동 등의 오차를 최소화할 수 있어서 더욱 우수한 것으로 밝혀졌다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.