• Title/Summary/Keyword: Lactic Acid Fermentation

Search Result 1,665, Processing Time 0.028 seconds

Study on Anti-oxidative Activities and Beverage Preferences Relating to Fermented Lotus Root and Platycodon grandiflorum Extracts with Sugar through Lactic Acid Fermentation (젖산발효한 연근, 도라지 당추출 발효액의 항산화 활성과 음료기호성에 관한 연구)

  • Lee, Kyung-Soo;Kim, Ju-Nam;Chung, Hyun-Chae
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.1
    • /
    • pp.183-192
    • /
    • 2015
  • This study aimed to produce fermented extracts with sugar made from lotus root (LR) and Platycodon grandiflorum (PG), using lactic acid fermentation, and confirmed their physiological and anti-oxidative activities as basic data for manufacturing functional drinks through sensory tests. For the final sugar concentrations, PG showed $48.1^{\circ}brix$ and LR showed $52.0^{\circ}brix$. Sugar concentrations during lactic acid fermentation following dilution of sugar to $12^{\circ}brix$, ranged from $11.5{\sim}12.1^{\circ}brix$ for PG and $11.9{\sim}12.4^{\circ}C$ for LR. During lactic acid fermentation, lactic acid bacteria numbers tended to decrease in both fermented LR and PG extracts with sugar as the fermentation period increased. For DPPH radical scavenging ability, LR was three times higher in control without lactic acid fermentation while PG showed significant increases in L. acidophilus (77%), L. brevis (90%), and L. delbrueckii (177%) during lactic acid fermentation. For total polyphenol content, LR showed a higher concentration than PG, and except for fermented L. delbrueckii extract showing similarity with the control, contents of fermented extracts decreased. In the case of PG, CUPRAC, increased significantly in L. brevis, whereas FRAP, increased significantly in L. delbrueckii with lactic acid fermentation. For reducing power, except for fermentation with L. brevis, all PG showed lower reducing power activities. In the sensory test of fermented LR and PG extracts with sugar, both fermented extracts showed better results with L. brevis or L. delbrueckii than control or those with L. acidophilus in every item. Based on these results, it is highly possible to develop fermented extract drinks with sugar using LR or PG. In particular, lactic acid bacteria such as L. delbrueckii and L. brevis showed generally higher activities with potential as a functional drink.

The Production of Calcium Lactate by Lactobacillus sporogenes II. Production of Calcium Lactate (Lactobacillus sporgenes에 의한 젖산칼슘 생산 II. 젖산 칼슘 제조)

  • Lee, Gye-Geun;Kim, Yeong-Man;Min, Gyeong-Chan
    • The Korean Journal of Food And Nutrition
    • /
    • v.1 no.2
    • /
    • pp.102-107
    • /
    • 1988
  • Production of calcium lactate very useful for medical supplies of Ca-therapy was obtained by lactic acid fermentation of lactobacillus sporogenes, a spore forming lactic acid bacterium. Corn steep liquor 1%, soybean enzyme hydrolysate 3%, yeast extract powder 2% can substitute for yeast extract and peptone as nutrient sort traces in fermentation medium using 10% glucose concentration. In the calcium lactate production medium containing yeast extract powder 2%, glucose 18%, CaCO3 12%, the lactic acid fermentation was carried out at 45$^{\circ}C$ for 4days with continuous agitation of 100 rpm. As results, fermentation yield was 97.5%. The five steps such as protein coagulation, decolorizing evaporating, crystallizing, and drying were carried out to harvest calcium lactate from 10l of supernatant of fermented medium to be removed cell and CaCO3. As results, 2065.0g of white crystal calcium lactate dihyrate was recovered and a yield of 84.9% was obtained.

  • PDF

Changes in Enzyme Activities and Population of Lactic Acid Bacteria during the Kimchi Fermentation Supplemented with Water Extract of Pine Needle (솔잎(Pinus densiflora Sieb. et Zucc.) 물추출물 첨가김치의 숙성 중 젖산균수와 효소활성의 변화)

  • 오영애;최경호;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.2
    • /
    • pp.244-251
    • /
    • 1998
  • To understand the effect of supplement of water extract of pine needle(WEPN) on shelf-life enhancement of the kimchi, activities of four enzymes and number of lactic acid bacteria, during fermentation of the kimchi, were assayed. Enzyme activities of kimchi fermented for 7 days with supplement by 2% water extract of pine needle showed amylase of 86.4%, protease of 85.8%, polygalacturonase of 61.5% and $\beta$-galactosidase of 58.8% against the control kimchi. WEPN showed weak inhibitory effect when it was applied to the isolated enzymes in vitro then those menifested by the kimchi in vivo. Number of total bacterial cell of WEPN supplemented kimchi increased by 10 folds than control between 7 to 14 days of fermentation. On contrast, number of lactic acid bacteria decreased maximaly to 21% of control by fermentation. The clear zone formed on paper disk by WEPN against L. plantarum was larger than that of Leu. mesenteroides.

  • PDF

Effects of Protease-resistant Antimicrobial Substances Produced by Lactic Acid Bacteria on Rumen Methanogenesis

  • Reina, Asa;Tanaka, A.;Uehara, A.;Shinzato, I.;Toride, Y.;Usui, N.;Hirakawa, K.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.700-707
    • /
    • 2010
  • Effects of protease-resistant antimicrobial substances (PRA) produced by Lactobacillus plantarum and Leuconostoc citreum on rumen methanogenesis were examined using the in vitro continuous methane quantification system. Four different strains of lactic acid bacteria, i) Lactococcus lactis ATCC19435 (Control, non-antibacterial substances), ii) Lactococcus lactis NCIMB702054 (Nisin-Z), iii) Lactobacillus plantarum TUA1490L (PRA-1), and iv) Leuconostoc citreum JCM9698 (PRA-2) were individually cultured in GYEKP medium. An 80 ml aliquot of each supernatant was inoculated into phosphate-buffered rumen fluid. PRA-1 remarkably decreased cumulative methane production, though propionate, butyrate and ammonia N decreased. For PRA-2, there were no effects on $CH_4$ and $CO_2$ production and fermentation characteristics in mixed rumen cultures. The results suggested that PRA-1 reduced the number of methanogens or inhibited utilization of hydrogen in rumen fermentation.

Garlic Fermentation by Lactic Acid Bacteria

  • Kim, Yu-Sun;Baek, Hyung-Hee;Chung, Ill-Min;Kwon, Bin;Ji, Geun-Eog
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1279-1283
    • /
    • 2009
  • Garlic has been used for condiments and also for medicines to cure various diseases since ancient times. Many studies on the processing of garlic have been published, however, few of them were related with fermentation because of the antimicrobial action of the garlic. In this study, to conduct garlic fermentation, 4 lactic acid bacteria (LAB) strains with growth abilities in garlic medium were selected. Addition of various nitrogen, carbon, and mineral sources generally did not improve the growth of experimental strains during garlic fermentation except for Lactobacillus casei KFRI 704 by yeast extract and Lactococcus lactis subsp. cremoris ATCC 19257 by mineral sources. High performance liquid chromatography (HPLC) analysis of 32 phenolic compounds during fermentation showed that formononetin was decreased time dependently. The concentrations of volatile compounds and alliin did not change during fermentation. The results of this study would provide the basic understanding of garlic fermentation by selected strains of LAB.

The Changes of Vitamin C and Lactic Acid Bacteria Count in Dongchimi used Different Kinds of Water (물의 종류를 달리한 동치미의 발효과정 중 비타민 C와 젖산균수의 변화)

  • Ahn, Gee-Jung;Shim, Young-Hyun;Yoo, Chang-Hee
    • Culinary science and hospitality research
    • /
    • v.11 no.2
    • /
    • pp.91-109
    • /
    • 2005
  • The purpose of this study was to investigate the changes of vitamin C and lactic acid bacteria count in Dongchimi used different kinds of water (distilled water, purified water, Cho Jung Carbonated Natural water). Dongchimi used different kinds of water was fermented at $10^{\circ}C$ for 46 days. The changes of pH on Dongchimi used different kinds of water decreased in all samples during fermentation period, and then showed a slow decrease after 12 days of fermentation. The total acidity of Dongchimi used Cho Jung Carbonated Natural water arrived slowly at best tasting condition(0.3~0.4 point) compared with other conditions. The changes of salt content were ranked high one by one , Cho Jung Carbonated Natural water>purified water>distilled water during fermentation period. At early stage of fermentation, the changes of turbidity of Dongchimi used Cho Jung Carbonated Natural water showed highly as compared with other test conditions for 12 days of fermentation. Vitamin C content was measured high in Dongchimi used Cho Jung Carbonated Natural water during the fermentation period. Because calcium content was high in carbonated natural water, carbonated natural water had the highest calcium content during the fermentation period. The changes of lactic acid bacteria count showed the highest price at all experimental groups in 15 days of fermentation, but those of Dongchimi used Cho Jung Carbonated Natural water showed the highest price in 19 days of fermentation.

  • PDF

A study on the microflora changes during Takju brewing (탁주발효에 있어서 발효미생물군의 변동에 대하여)

  • 신용두;조덕현
    • Korean Journal of Microbiology
    • /
    • v.8 no.2
    • /
    • pp.53-64
    • /
    • 1970
  • In order to study ecology of microorganisms during Takju brewing, microflora changes were examined fromm the start to the sixth day of Takju fermentation in 24 hours intervals. Takju made from rice, flour and dried sweet potato in a liter volume open container at the laboratory and a sanple of Takju brewing factory were studied for their microflora and their changes during fermentationl together with a sample of Kokja. Results obtained were as follows ; 1. The followings were the identified microorganisms in Kokja. The molds ; Absidia spinosa, Aspergillus parasiticus. The yeasts ; Candida melinii, Candida Solani, Hansenula anomala. The bacteria ; Luctobacillus casei, Leuconostoc mesenteroides, Bacillus subtilis, Bacillus pumilus. 2. Torulopsis inconspicua, Lactobacillus casei, Leuconotoc mesenteroides, Bacillus subtilis, Bacillus pumilus were isolated from main mash of laboratory-made Takju samples. The yeast, Torupsis inconspicua which was not present in Kokja and, probably of a contaminant yeast, dominated the yeast flora of Takju mash of rice, flour and sweet potato of labotatory brewing. The laboratory brewing lost also always showed large population of lactic acid bacteria flora. 3. None of the wild yeasts which were present in Kokja appeared in Takju mashes. The Kokja appears to be of no use as the yeast source for Takju fermentation. Also the Kokja appears to be of not so effective amylolytic and proteolytic enzyme sources considering the microflora characteristics. Probably the major role of Kokja in Takju fermentation may be to contribute in taste formation. 4. Inoculation of Sacharomyces cerevisiae into the mash to the level of $10^7$ ml at the start of fermentation greatly changed the ecological aspects eliminating conditions of rather slow rising of natural contaminant yeast populaiton and fermentation which might give rise to prosperity of lactic acid and Bacillus bacteria that would be avoidable. 5. Examination of microflora of the large factory scale Takju fermentation showed the quite similar pattern of microflora and their changes to that of the cultured yeast-inoculated laboratory batch Takju fermentation. The cultured yeast dominated as the only predominant microflora, and the lactic acid bacteria flora were completely suppressed and aerobic bacteria, greatly. Probably this may be the regular microflora pattern of normal Takju fermentation. The role of lactic acid bacteria and aerobic bacteria in Takju fermentation may not be clear yet from this experiment alone.

  • PDF

Microbiological Characteristics and Cytoprotective Effects of Samjung-Hwan Fermented by Lactic Acid Bacteria (유산균을 이용한 발효삼정환의 미생물 특성 및 세포 보호 효과)

  • Chang, Seju;Wang, Jing-Hua;Shin, Na Rae;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • Objectives: To confirm microbiological change and cytoprotective effect of Samjung-hwan (SJH) which fermented by Lactic acid bacteria from natural fermented SJH. Methods: SJH was fermented by Lactobacillus brevis and Lactococcus lactis subsp. lactis from natural fermented SJH. After 1 week of fermentation, we analysed pH and microbial profiling. We also performed measuring total polyphenol total flavonoid contents and 1,1-Diphenyl-2-picryhydrazyl (DPPH) free radical scavenging activity to investigate antioxidant ability. Cell viability was performed by using HepG2 cell. Results: pH of lactic acid bacteria inoculated group and non-inoculated group was decreased and total counts of lactic acid bateria for both group was increased after fermentation of SJH. Total polyphenol and flavonoid contents and DPPH free radical scavenging activity was increased in both group. Total polyphenol contents of lactic acid bacteria Inoculated group is more increased than non-inoculated group. HepG2 cell viability was increased in both group. Conclusions: SJH fermentd by Lactobacillus brevis and Lactococcus lactis subsp. lactis shows change in microbiological character and has cytoprotective effect. Further studies are required for investigating function of lactic acid bacteria during fermentation of SJH.

Recovery of Lactic Acid from Fermentation Broth Using Precipitation and Reactive Distillation (발효액으로부터 침전과 반응증류를 이용한 젖산의 회수)

  • Park, Suk-Chan;Lee, Sang-Mok;Kim, Young-Jun;Kim, Woo-Sik;Koo, Yoon-Mo
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.199-203
    • /
    • 2006
  • Precipitation and reactive distillation were employed to recover lactic acid from fermentation broth. Lime was initially added to fermentation broth in order to convert soluble lactic acid to an insoluble calcium lactate form. Drowning-out crystallization was used to decrease the solubility of calcium lactate by adding ethanol as a co-precipitant. In the ideal solution of organic acids as well as fermentation broth, precipitation experiments were performed with varying amounts of ethanol. Precipitation process was followed by reactive distillation. Carboxylate salts formed in the previous precipitation process were mixed with carbon dioxide and triethylamine to precipitate as calcium carbonate. The remaining liquid was distilled for 1 hr at different temperatures. Triethylamine and water were recovered from the top of the distiller, while organic acids, inducing lactic acid as a main component remained in feeding bottle. The yield of recovered lactic acid was 67.5% with the purity of 99.7%.

Analysis of Constituents in Socheongryong-tangs Fermented by Lactic acid bacteria (유산균 발효에 의한 소청룡탕의 발효 전 후 성분 변화 연구)

  • Yang, Min-Cheol;Kim, Dong-Seon;Jeong, Sang-Won;Ma, Jin-Yeul
    • Korean Journal of Oriental Medicine
    • /
    • v.17 no.3
    • /
    • pp.115-121
    • /
    • 2011
  • Objective : The purpose of this study was to investigate the changes in the contents of constituents in Socheongryong-tang (CY) and its fermentations (FCY) with 10 species of lactic acid bacteria. Methods : Ten strains of lactic acid bacteria, Lactobacillus casei 127, L. acidophilus 128, L. casei 129, L. plantarum 144, L. amylophilus 161, L. curvatus 166, L. delbruekil subsp. lactis 442, L. casei 693, B. breve 744, and B. thermophilum 748, were used for the fermentation of Socheongryong-tang. The increased and decreased constituents were identified using HPLC/DAD and various liquid chromatographic techniques, and the structure was elucidated using NMR and MS. These compounds were quantitatively analyzed using an HPLC/DAD system. Results : The increased constituents were identified to be liquiritigenin (1) and cinnamyl alcohol (2), and the decreased constituent was determined to be liquiritin (3). Liquiritigenin (1) and cinnamyl alcohol (2) were increased in all of the FCYs, while liquiritin (3) was decreased. The fermentation of the ten lactic acid bacteria demonstrated that the decomposable rate of these three compounds in FCYs were different. Socheongryong-tang fermented by L. plantarum 144 and L. amylophilus 161 showed the most remarkable changes. Conclusions : CY could be increased antibacterial, neuroprotective, or antiinflammatory effect by fermentation with lactic acid bacteria, especially with L. plantarum and L. amylophilus, considering their known biological activities. In addition, it is expected that this study will help to establish quality control parameters for FCY.