• Title/Summary/Keyword: Laboratory/in situ velocity

Search Result 54, Processing Time 0.028 seconds

Evaluation of Disturbance Effect of Penetrometer by Dissipation Tests (소산 실험을 이용한 관입 장비의 교란 효과 추정)

  • Yoon, Hyung-Koo;Hong, Sung-Jin;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.339-347
    • /
    • 2008
  • The penetration of the probe produces the excess pore pressure due to the disturbance. The objective of this study is to evaluate the disturbance zone by using the dissipation of the excess pore water pressure, which was generated due to the penetration of the penetrometer with different size. The CPT, DMT and FVP (Field Velocity Probe) are adopted for in-situ tests. The tests are carried out in the construction site of north container pier of Busan new port, Korea where is accelerating the consolidation settlement using plastic board drains (PBD) and surcharges by crushed gravels. The coefficient of consolidation $(C_h)$ and soil properties are deduced by the laboratory test. The in-site tests are performed after the predrilling the surcharge zone at the point of 90% degree of consolidation. To minimize the penetration effect, the horizontal distance between penetration tests is 3m, the change of the pore pressure is monitored at the fixed depth of 24m. The coefficient of consolidation $(C_h)$ and the $t_{50}s$ are calculated based on the laboratory test and the in-situ data, respectively. The equvalent radi based on the $t_{50}$ shows that the FVP and the DMT produce the smallest and the greatest equivalent radi, respectively.

On the Evaluation of Construction Standards Based on Seismic Velocities Obtained In-Situ and through Laboratory Rock Tests (현장 및 실내 측정 탄성파 속도에 근거한 암반평가 기준에 대한 고찰)

  • Lee, Kang Nyeong;Park, Yeon Jun
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.230-242
    • /
    • 2017
  • Seismic velocities measured from in-situ tests (n=177) and through rock core samples (n=1,035) are reviewed in light of construction standards, widely used standards as a first-hand approximation of rock classification solely based on seismic velocities. In-situ down hole tests and refraction survey for soft rocks showed seismic velocities of 1,400~2,900 m/s which is faster than those specified in construction standards. For moderate~ hard rocks, in-situ down hole tests and refraction survey showed 2,300~3,800 m/s which roughly corresponds with the range specified in the construction standards. A similar trend is also observed for seismic velocities measured from rock core samples. The observed differences between construction standards and seismic velocities can be explained in two ways. If construction standards are correct the observed differences may be explained with seismic velocities affected by underlying fast velocities and also possibly with selection of intact cores for velocity measurement. Alternatively, construction standards may have intrinsic problems, namely artificial discrete boundaries between soft rocks and moderate rocks, application of foreign standards without consideration of geologic setting and lack of independent verification steps. Therefore, we suggest a carefully designed verification studies from a test site. We also suggest that care must be exercised when applying construction standards for the interpretation and accessment of rock mass properties.

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.

Analysis of Influence Factors for Remediation of Contaminated Soils Using Prefabricated Vertical Drains (연직배수재를 이용한 오염지반 복원의 영향인자 분석)

  • Park, Jeongjun;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.39-46
    • /
    • 2008
  • Due to the growth in industrialization, potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. There are a number of approaches to in-situ remediation that are used in contaminated sites for removing contaminants. These include soil flushing, dual phase extraction, and soil vapor extraction. Among these techniques, soil flushing was the focus of the investigation in this paper. Incorporated technique with PVDs has been used for dewatering from fine-grained soils for the purpose of ground improvement by means of prefabricated vertical drain systems. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. The modeling was intended to predict the effectiveness and time dependence of the remediation process. Modeling has been performed on the extraction, considering tracer concentration and laboratory model test characteristics. The computer model used herein are SEEP/W and CTRAN/W, this 2-D finite element program allows for modeling to determine hydraulic head and pore water pressure distribution, efficiency of remediation for the subsurface environment. It is concluded that the coefficient of permeability of contaminated soil is related with vertical velocity and extracted flow rate. The vertical velocity and extracted flow rate have an effect on dispersivity and finally are played an important role in-situ soil remediation.

  • PDF

A Study of the Laboratory Scale Measurement Technique of P-Wave Velocity for the Assessment of the An isotropy of Engineering Property of Rock (암석의 공학적 이방성 측정을 위한 실험실내 P파 속도 측정기법에 대한 연구)

  • 박형동
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.237-274
    • /
    • 1995
  • This study was focused on the improvement of the measurement technique of P-wave velocity for the assesment of the anisotropy of the engineering property of rock. Samples used were collected from a working quarry within the Carnmenellis granite area on which series of engineering geological data have been accumulated. This study mainly concerned the development of measurement technique at the curved surface of rock, the use of natural honey-based coupling agent and the drying method for rock specimen over $P_2O_5$. According to the results, the range of the P-wave velocity anisotropy in two dimensional plane, fell between 0 and 4.68 (%). The direction where maximum velocity occurred was parallel to the orientation of the maximum in-situ stress. The result showed that P - wave velocity is a useful measure to asses the anisotropy of the engineering property of rock and it is suggested that the improvements adopted here can be applied to the experimental work on the rocks in Korea.

  • PDF

Verification and Application of Velocity Measurement Using Price Meter and ADCP (회전식유속계와 ADCP를 이용한 유속측정의 검증 및 적용)

  • Kim, Eung-Seok;Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.101-106
    • /
    • 2009
  • Although ADCP(Acoustic Doppler Current Profiler) have been introduced and utilized for flow measurements since the end of 1990's, in-situ behavior performance of ADCP at stream gauging stations has not been evaluated in Korea. The purpose of this study is for verification and application of velocity measurements using a price meter and ADCP. The verification of measured velocities was carried out in a laboratory open-channel. The differences between the two velocity values measured by a pirce meter and ADCP are within 2.1%, which means that ADCP can be used at stream gauging stations. After verification, ADCP was applied to the Maekok stream selected as a test site for application. for application. The test application was performed by comparison of velocity results measured by ADCP and a price meter. Results show that the velocity values obtained by using ADCP coincide well with those by using conventional devices with the average measurement discrepancy of 10.5%.

Ultrasonic flushing 기법에 의한 유류오염토양의 복원에 관한 실험연구

  • Jeong, Ha-Ik;Oh, In-Gyu;Kim, Sang-Geun;Lee, Yong-Su;Yoo, Jun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.13-17
    • /
    • 2002
  • Ultrasonic waves have several mechanical, chemical, and biological effects on a saturated soil medium. Their mechanical effects, popularly known as cavitation. Cavitation is the rapid and repeated formation, and resulting implosion, of imcrobubbles in a liquid, resulting in the propagation of microscopic shock waves. In a soil-liquid system, their mechanical effects generate high differntial fluid-particle velocities and microscopic shock waves. The velocity perturbations are capable of dislodging oil in the system by overcoming the forces binding oil to sand particles. In this study, a series of laboratory experiments involving the simple flushing and ultrasonic flushing were carried out. An increase in permeability and oil removal rate were observed in ultrasonic flushing tests. Some practical implications of these results are discussed in terms of technical feasibility of in situ implementation of ultrasonics.

  • PDF

Study on the Geotechnical Characteristics of Granite in Korea and their Correlation with Rock Classification Method (국내 화강암의 지반공학적 특성 및 암반분류법과의 상관성에 관한 연구)

  • SunWoo, Choon;Ryu, Dong-Woo;Kim, Hyung-Mok;Kim, Ki-Seog
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.205-215
    • /
    • 2011
  • In this study, we analyzed physical properties of granites and their correlation with rock mass classification methods. The granite samples were obtained from field survey, in-situ borehole tests and laboratory tests for a design phase of various roads, railways and other civil engineering works in Korea. Among the measured physical properties, the results of unit weight, compressive strength, tensile strength, seismic velocity, cohesion, friction angle, elastic modulus and deformation modulus were introduced. We also correlated these properties with the compressive strength. The results of different rock classification method of RQD, RMR, and Q-system against the granites in Korea were compared with each other, and the correlation equations were proposed in a more simplified form. We also derived RMR values using the compressive strength as well as the RQD values of in-situ drilled cores, and estimated the deformation modulus of in-situ rock mass in terms of the RMR values.

Relationship between Stiffness and Shear Strength of Normally Consolidated Clay using Triaxial Compression Tests and Shear Wave Measurements (삼축압축시험과 전단파 계측을 이용한 정규압밀 점성토의 강성도와 전단강도의 상관관계)

  • Oh, Sang-Hoon;Kim, Hak-Sung;Kim, Eun-Jung;Park, In-Beom;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1124-1131
    • /
    • 2008
  • Thanks to a new in-situ seismic probe, using bender elements and penetration scheme, a simple linear relationship between undrained shear strength(Cu) and shear wave velocity(Vs) was obtained. This priceless relationship is worthy to be illuminated further in ideal laboratory environment. To avoid sampling disturbance effect, special consolidation cylinders were used to make normally consolidated specimens from kaolinite suspension. The undrained shear strengths of the specimens were measured using unconsolidated undrained triaxial compression tests. Also shear wave velocity measurements were performedprior to shearing the same specimens, using the bender elements installed in the base pedestal and the top cap of the triaxial compression cell. The Cu-Vs relationship is fairly linear and supports the linear trend of clayey silt obtained using field testing. Also the classic density-shear modulus relationship for soft clay proposed by Hardin and Black(1969) was once more verified hereby.

  • PDF

Consolidation Efficiency of In-situ Application Considering Weathering Grade and Rock Properties for Stone Cultural Heritage in Yeongyang Area, Gyeongsangbuk-do (경북 영양일대 석조문화재의 구성암석과 풍화도를 고려한 표면강화제의 현장적용 효과)

  • Lee, Myeong-Seong;Kim, Jae-Hwan;Lee, Jae-Man;Lee, Jang-Jon
    • Journal of Conservation Science
    • /
    • v.27 no.3
    • /
    • pp.277-290
    • /
    • 2011
  • The aim of this study is to examine the efficiency of ethylsilicate consolidants on sandstone according to its weathering state for an appropriate application to stone cultural heritage in Yeongyang area. Yeongyang area had sandstone and conglomeratic sandstone cultural heritages which needed conservation intervention due to granular disintegration and scaling on their surface. Hyeonri Three-storied Pagoda having typical stone materials in this area was investigated for the analyses of the material and deterioration. And both in-situ and laboratory applications of consolidants were conducted to the outcrop which had the same characteristics of rock type and weathering grade. As a result of the application, it was concluded that Wacker OH 100 and Remmers 300 showed the most appropriate consolidating effect, and Remmers 300 was the most effective to strengthen the loosen and granular-disintegrated surface of the sandstone.