Journal of the Institute of Electronics Engineers of Korea SP
/
v.43
no.6
s.312
/
pp.85-96
/
2006
This paper deal with a method for efficient placing 2 dimensional virtual labels on the view plane. The proposed method has suitable computational costs for realtime processing and it overcomes the local minima problem which is not solved in previous automatic label placement algorithms, and also it enhances readability by placing labels in less congestion area on the view plane. Background analysis must be considered for label placement. However previous works do not concern with this problem seriously. And furthermore, automatic label placement algorithm and background analysis algorithm have been studied separately in their own field. This paper proposed the background analysis method using background color and texture component to enhance readability, and it is the first research about analyzing the background of color image and applying it in automatic label placement field. This paper shown improved placement performance through combining automatic label placement algorithm and background analysis algorithm organically, and various experiments verified it.
Journal of the Korean Applied Science and Technology
/
v.20
no.3
/
pp.268-273
/
2003
IASL(iodo acetamide spin label) and MSL(maleimide spin label) disordered the orderly helix arrangement of myosin in the rest state of spin level. Especially the effect of IASL was great. The muscle was isometrically tetanized with three trains of 3ms pulses every 50ms between $5^{\circ}C$ with $25^{\circ}C$. Equatorial reflection change inferred that myosin head was moved to the vicinity of actin filament by spin level. The intensity change of $143{\AA}$ and $72{\AA}$ could offer information of the mass projection of population of myosin head along the filament axis. The slope of intensity profile of the mass projection of $143{\AA}$ and reflection of IASL is appeared and that of MSL is appeared sharply. The decrease of $215{\AA}$ reflection intensity the periodical character of $143{\AA}$ reflection by spin label. The raise of MSL actin reflection at $51{\AA}$ and $59{\AA}$ in the actin reflection change refers that the shifted myosin head binds a certain actin or changes an actin structure by spin label effect. Because iodo acetamide has a tendency to decease the actin reflection, actin dose not bind myosin head. From this result, we can conclude that IASL and MSL are spin labeled on SH of myosin head and disordered the helix arrangement of actin.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.607-610
/
2021
When learning a model in supervised learning, input data and the label of the data are required. However, labeling is high cost task and if automated, there is no guarantee that the label will always be correct. In the case of supervised learning in such a noisy labels environment, the accuracy of the model increases at the initial stage of learning, but decrease significantly after a certain period of time. There are various methods to solve the noisy label problem. But in most cases, the probability predicted by the model is used as the pseudo label. So, we proposed a method to predict the true label more quickly by refining the probabilities predicted by the model. Result of experiments on the same environment and dataset, it was confirmed that the performance improved and converged faster. Through this, it can be applied to methods that use the probability distribution predicted by the model among existing studies. And it is possible to reduce the time required for learning because it can converge faster in the same environment.
Journal of the Korea Society of Computer and Information
/
v.29
no.11
/
pp.21-30
/
2024
High-dimensional data causes difficulties in machine learning due to high time consumption and large memory requirements. In particular, in a multi-label environment, higher complexity is required as much as the number of labels. This paper proposes a feature selection method to improve classification performance in multi-label settings. The method considers three types of relationships: between features, between features and labels, and between labels themselves. To achieve this, a regression-based objective function is designed. This objective function calculates the linear relationships between features and labels and uses mutual information to compute relationships between features and between labels. By minimizing this objective function, the optimal weights for feature selection are found. To optimize the objective function, a gradient descent method is applied to develop a fast-converging algorithm. The experimental results on six multi-label datasets show that the proposed method outperforms existing multi-label feature selection techniques. The classification performance of the proposed method, averaged over six datasets, showed a Hamming loss of 0.1285, a ranking loss of 0.1811, and a multi-label accuracy of 0.6416. Compared to the AMI(Approximating Mutual Information) algorithm, the performance was better by 0.0148, 0.0435, and 0.0852, respectively.
Patient counseling is emerging as one of the most important roles of community pharmacists because the information on the standard labeling for the prescription drug is not sufficient to ensure the correct use of the drug. However, excessive workload of the community pharmacists in Korea discourages the provision of the effective patient counseling. The use of auxiliary label may be an efficient tool to help patients correctly use the prescription drug in this situation. As a preliminary study to encourage the use of auxiliary label, we have performed a survey analysis of familiarity and willingness of community pharmacists to use the auxiliary label. About three quarters of the participating community pharmacists have heard of the auxiliary label, however, there was not a single pharmacist who uses the label. Furthermore, only one fifth of the participating pharmacists were willing to use the label if they have to purchase. Therefore, it is recommended that governmental and non-profit organizations such as Korean Pharmaceutical Association educate community pharmacists regarding usefulness of the auxiliary label with focus on enhancing patient compliance and constrainment of healthcare expense.
A Shortest Path Algorithm is the method to find the most efficient route among many routes from a start node to an end node. It is based on Labeling methods. In Labeling methods, there are Label-Setting method and Label-Correcting method. Label-Setting method is known as the fastest one among One-to-One shortest path algorithms. But Benjamin[1,2] shows Label-Correcting method is faster than Label-Setting method by the experiments using large road data. Since Graph Growth algorithm which is based on Label-Correcting method is made to find One-to-All shortest path, it is not suitable to find One-to-One shortest path. In this paper, we propose a new One-to-One shortest path algorithm. We show that our algorithm is faster than Graph Growth algorithm by extensive experiments.
This study investigated the effects and interrelationship on sensual behavior and wine information sources in selection attributes of wine. Selection attributes of wine were categorized into four variables: sensual behavior, recommend information, label information, and wine information. The study showed that for sensual behavior variable, "taste" was the most influential item as compared to "food harmony", "mood harmony" and "partner's choice". For recommendation information, label information and wine information, "specialist", "grape varieties" and "brand" had the most significant effects. The study performed factor analysis on sensual behavior and wine information sources. The cumulative variance was 74.197%, implying that all four variables incorporated appropriate items. In the reliability analysis, all four variables showed Cronbach's ${\alpha}$ values above 0.6. In the analysis of the causal relations using a structural model, the effects of customers' sensual behavior on wine information sources was further investigated. The model verified that taste, food harmony, mood harmony and partner's choice, which are items of sensual behavior, had significant impacts when choosing wine. Sensual behavior influenced all wine information sources, which customers utilize in decision-making. Among these sources, sensual behavior had the biggest effects on recommendation information, followed by wine information and label information.
Label switching technology is currently emerging as a solution for the rapidly growing of Internet traffic demand. Multiprotocol label switching(MPLS) is one of the standards made by the Internet Engineering Task Force(IETE) intended to enhance speed, scalability, and inter-opearability between label switching technologies. In MPLS, utilization of label space is a very important factor of network performance because labels are basic unit in packet switching. We propose a algorithm to effectively use label space by a multiple disconnect timer at the label switching router. Our algorithm is based on multiple utilization of the connection release timer over the MPLS network with multiple domains. In our algorithm, a relatively linger timeout interval is assigned to the traffic with higher class by the aid of the packet classifier. This reduces delay for making a new connection and also reduces the amount of packets which will be routed to the layer 3. Simulation results shows that reduction of required label number in MPLS network and this indicate our algorithm offers better performance than the existing ones in term of utilization of label space.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.5
/
pp.1252-1271
/
2013
Automatic image annotation has become an increasingly important research topic owing to its key role in image retrieval. Simultaneously, it is highly challenging when facing to large-scale dataset with large variance. Practical approaches generally rely on similarity measures defined over images and multi-label prediction methods. More specifically, those approaches usually 1) leverage similarity measures predefined or learned by optimizing for ranking or annotation, which might be not adaptive enough to datasets; and 2) predict labels separately without taking the correlation of labels into account. In this paper, we propose a method for image annotation through collaborative similarity metric learning from dataset and modeling the label correlation of the dataset. The similarity metric is learned by simultaneously optimizing the 1) image ranking using structural SVM (SSVM), and 2) image annotation using correlated label propagation, with respect to the similarity metric. The learned similarity metric, fully exploiting the available information of datasets, would improve the two collaborative components, ranking and annotation, and sequentially the retrieval system itself. We evaluated the proposed method on Corel5k, Corel30k and EspGame databases. The results for annotation and retrieval show the competitive performance of the proposed method.
Transactions of the Society of Information Storage Systems
/
v.9
no.1
/
pp.28-31
/
2013
We proposed a method to fabricate label-free protein sensor with sub-wavelength nanograting structures to be used for diagnosing acute myocardial infarction. A nickel stamp for the injection molding of nanograting integrated protein sensor was fabricated by electroforming process with high fidelity. By using metallic stamp, we replicated label-free protein sensor via injection molding, which is an outstanding method for low-cost and mass production of polymer products. Finally, we performed a feasibility test, examining cardiac troponin T (cTnT) and anti-cTnT interactions. From the results, we demonstrated that the fabricated protein sensor can provide information for the early and accurate detection of cardiac diseases such as acute myocardial infarction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.